Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Interfacial stability Enhancement in Single-Crystal NCM cathodes through electronic structure optimization

Full metadata record
DC Field Value Language
dc.contributor.authorHeo, Boseong-
dc.contributor.authorKim, Miseung-
dc.contributor.authorHwang, Chihyun-
dc.contributor.authorKim, Hyunwoo-
dc.contributor.authorPin, Minwook-
dc.contributor.authorNa, Beomtak-
dc.contributor.authorLee, Jinbae-
dc.contributor.authorBak, Chul U.-
dc.contributor.authorCheong, Jun Young-
dc.contributor.authorYu, Seung-Ho-
dc.contributor.authorChang, Joon Ha-
dc.contributor.authorKim, Hyun-seung-
dc.contributor.authorKim, Youngjin-
dc.date.accessioned2025-12-19T08:30:13Z-
dc.date.available2025-12-19T08:30:13Z-
dc.date.issued2025-11-
dc.identifier.issn1369-7021-
dc.identifier.issn1873-4103-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/81390-
dc.description.abstractInterfacial degradation mechanisms in layered oxide cathodes represent fundamental limitations for advanced lithium-ion systems, yet systematic differentiation between bulk crystallographic strain and electronic structure-mediated interfacial instability remains challenging. Through comparative investigation of single-crystal LiNi<inf>0.6</inf>Co<inf>0.1</inf>Mn<inf>0.3</inf>O<inf>2</inf> (SC-NCM613) and LiNi<inf>0.8</inf>Co<inf>0.1</inf>Mn<inf>0.1</inf>O<inf>2</inf> (SC-NCM811) under equivalent electrochemical conditions, we demonstrate that performance differentiation originates from composition-dependent electronic structure modulation at electrode–electrolyte interfaces rather than conventional voltage constraints. Contrary to conventional expectations, single-crystal NCM613 achieves superior capacity retention (86.8 % after 1,000 cycles) at elevated voltage (4.35 V) compared to NCM811 (84.1 % retention) at reduced voltage (4.2 V), showing better stability at higher voltage. Spectroscopic characterization reveals equivalent bulk oxidation states while surface analysis demonstrates pronounced compositional dependence in frontier orbital configurations near the Fermi level. Surface-sensitive analyses reveal suppressed electron population density in SC-NCM613, substantially constraining rock-salt phase propagation depth in SC-NCM811. These findings suggest that rational electronic structure engineering provides a more effective approach than conventional compositional maximization, enabling competitive electrochemical performance while maintaining high energy density requirements. © 2025 Elsevier Ltd.-
dc.format.extent12-
dc.language영어-
dc.language.isoENG-
dc.publisherElsevier BV-
dc.titleInterfacial stability Enhancement in Single-Crystal NCM cathodes through electronic structure optimization-
dc.typeArticle-
dc.publisher.location영국-
dc.identifier.doi10.1016/j.mattod.2025.10.006-
dc.identifier.scopusid2-s2.0-105022164974-
dc.identifier.wosid001652230500001-
dc.identifier.bibliographicCitationMaterials Today, v.90, pp 322 - 333-
dc.citation.titleMaterials Today-
dc.citation.volume90-
dc.citation.startPage322-
dc.citation.endPage333-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.subject.keywordPlusLAYERED OXIDE CATHODES-
dc.subject.keywordPlusNI-RICH-
dc.subject.keywordPlusION BATTERIES-
dc.subject.keywordPlusSURFACE-
dc.subject.keywordPlusRECONSTRUCTION-
dc.subject.keywordPlusCHARGE-
dc.subject.keywordAuthorElectronic structure engineering-
dc.subject.keywordAuthorInterfacial stability-
dc.subject.keywordAuthorMid-nickel cathode-
dc.subject.keywordAuthorNCM-
dc.subject.keywordAuthorSingle-crystal cathodes-
Files in This Item
There are no files associated with this item.
Appears in
Collections
공과대학 > 화학공학과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Hyun Woo photo

Kim, Hyun Woo
공과대학 (화학공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE