Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Can Llms Update Api Documentation?

Full metadata record
DC Field Value Language
dc.contributor.authorLee, Seonah-
dc.contributor.authorHeo, Jueun-
dc.contributor.authorDearstyne, Katherine R.-
dc.date.accessioned2025-12-18T07:30:16Z-
dc.date.available2025-12-18T07:30:16Z-
dc.date.issued2025-10-
dc.identifier.issn1063-6773-
dc.identifier.issn2576-3148-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/81375-
dc.description.abstractHuman-written API documentation often becomes outdated, requiring developers to update it manually. Researchers have proposed identifying outdated API name references in documentation, yet have not addressed updating API documentation. Now, emerging large language models (LLMs) are capable of generating code examples and text descriptions. Then, a key question arises: Can LLMs assist in updating API documentation? In this paper, we propose an approach for leveraging an LLM to update API documentation with code change information. To evaluate this approach, we select five open-source projects that manage documentation revisions on GitHub and analyze the differences in documentation between two releases to derive ground truths. We then assess the accuracy of LLM-generated updates by comparing them to the ground truths. Our results show that LLM-generated updates achieve higher METEOR than outdated API documentation (0.771 vs 0.679). It indicates that the LLM updates are more similar to the human updates than the outdated documentation. Our results also reveal that LLMs update code-related information in API documentation with a maximum F1 score of $\mathbf{0. 9 2 1}$. © 2025 IEEE.-
dc.format.extent12-
dc.language영어-
dc.language.isoENG-
dc.titleCan Llms Update Api Documentation?-
dc.typeArticle-
dc.publisher.location영국-
dc.identifier.doi10.1109/ICSME64153.2025.00048-
dc.identifier.scopusid2-s2.0-105022500151-
dc.identifier.bibliographicCitationProceedings - Conferense on Software Maintenance, pp 455 - 466-
dc.citation.titleProceedings - Conferense on Software Maintenance-
dc.citation.startPage455-
dc.citation.endPage466-
dc.type.docTypeConference paper-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscopus-
dc.subject.keywordAuthorAPI documentation-
dc.subject.keywordAuthorcode changes-
dc.subject.keywordAuthorcode summarization-
dc.subject.keywordAuthorLLMs-
dc.subject.keywordAuthorupdates-
Files in This Item
There are no files associated with this item.
Appears in
Collections
공학계열 > AI융합공학과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Seon Ah photo

Lee, Seon Ah
IT공과대학 (소프트웨어공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE