Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

ANN-based prediction of bainite start temperature in Fe-C-Mn-Si-Cr-Ni-Mo steels: comparison with empirical models and metallurgical insights

Full metadata record
DC Field Value Language
dc.contributor.authorIshtiaq, Muhammad-
dc.contributor.authorKim, Hongin-
dc.contributor.authorWang, Xiao-Song-
dc.contributor.authorKang, Sung-Gyu-
dc.contributor.authorReddy, N. S.-
dc.date.accessioned2025-11-17T01:30:12Z-
dc.date.available2025-11-17T01:30:12Z-
dc.date.issued2025-12-
dc.identifier.issn0965-0393-
dc.identifier.issn1361-651X-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/80826-
dc.description.abstractThis work presents an interpretable artificial neural network (ANN) model for precise prediction of the bainite start temperature in Fe-C-Mn-Si-Cr-Ni-Mo steels, trained on 46 experimentally validated compositions. The model captures the complex, nonlinear influence of multiple alloying elements and surpasses nine well-established empirical equations, achieving a Pearson's R of 0.987 and a mean absolute error of 8.25 degrees C. Through comprehensive sensitivity analysis, the roles of individual elements and their interactions are quantified, identifying manganese and carbon as the most impactful. Ternary contour diagrams offer intuitive visualization of austenite and ferrite stabilizer effects, enhancing metallurgical interpretation. The model's reliability is confirmed through independent validation, with prediction errors under 4%. To facilitate practical application, a user-friendly graphical interface enables real-time property prediction, virtual alloy design, and trend exploration. This ANN-based approach integrates accuracy, insight, and accessibility-offering a powerful tool to accelerate alloy development while minimizing experimental cost and effort. The model is limited to the reported composition ranges and thermal conditions, and future work will expand the dataset and employ DoA and XAI methods to improve applicability and interpretability.-
dc.language영어-
dc.language.isoENG-
dc.publisherInstitute of Physics Publishing-
dc.titleANN-based prediction of bainite start temperature in Fe-C-Mn-Si-Cr-Ni-Mo steels: comparison with empirical models and metallurgical insights-
dc.typeArticle-
dc.publisher.location영국-
dc.identifier.doi10.1088/1361-651X/ae1499-
dc.identifier.wosid001604924300001-
dc.identifier.bibliographicCitationModelling and Simulation in Materials Science and Engineering, v.33, no.8-
dc.citation.titleModelling and Simulation in Materials Science and Engineering-
dc.citation.volume33-
dc.citation.number8-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.subject.keywordPlusMEDIUM-CARBON STEELS-
dc.subject.keywordPlusPHASE-TRANSFORMATION-
dc.subject.keywordPlusALLOYING ELEMENTS-
dc.subject.keywordPlusCOOLING RATE-
dc.subject.keywordPlusMORPHOLOGY-
dc.subject.keywordPlusDESIGN-
dc.subject.keywordAuthorartificial neural network-
dc.subject.keywordAuthorempirical equations-
dc.subject.keywordAuthorbainite start temperature-
dc.subject.keywordAuthorFe-C-Mn-Si-Cr-Ni-Mo steels-
dc.subject.keywordAuthormetallurgical insights-
Files in This Item
There are no files associated with this item.
Appears in
Collections
공과대학 > 나노신소재공학부금속재료공학전공 > Journal Articles
공학계열 > Dept.of Materials Engineering and Convergence Technology > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Reddy, N. Subba photo

Reddy, N. Subba
공과대학 (나노신소재공학부금속재료공학전공)
Read more

Altmetrics

Total Views & Downloads

BROWSE