Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Water quality monitoring using hybrid physical-soft sensors for river digital twins: a comprehensive review

Full metadata record
DC Field Value Language
dc.contributor.authorKwon, Siyoon-
dc.contributor.authorKang, Yumin-
dc.contributor.authorNam, Su Han-
dc.contributor.authorKim, Young Do-
dc.date.accessioned2025-11-10T06:30:14Z-
dc.date.available2025-11-10T06:30:14Z-
dc.date.issued2025-11-
dc.identifier.issn0273-1223-
dc.identifier.issn1996-9732-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/80752-
dc.description.abstractDigital twin (DT) technology is gaining attention for effective water quality management by integrating diverse data sources and enabling real-time insights. The practical implementation of DT technology for intelligent river water quality management requires extensive spatiotemporal big data, underscoring the critical need to integrate physical sensors, soft sensors, and remote sensing technologies. Here, we synthesized recent advancements in hybrid physical-soft sensing systems and highlighted their potential to address the inherent limitations of conventional water quality monitoring methods, such as limited spatiotemporal resolution and high operational costs. Soft sensors, driven by machine learning (ML), estimated difficult-to-measure water quality parameters by leveraging easily measurable variables from physical sensors. Therefore, soft sensors significantly expanded the range of measurable parameters and improved data collection frequency. In addition, remote sensing offers broad spatial coverage, enabling large-scale monitoring of optically active constituents, algal blooms, and sediment dynamics. We critically review methodologies and applications that integrate these sensing technologies into DT frameworks, and identify critical knowledge gaps, particularly the lack of a fully unified integration framework combining these technologies for next-generation DT systems. By assessing the strengths and limitations of each approach and proposing integration strategies, this study offers practical guidance and integration recommendations for DT-based river management.-
dc.format.extent22-
dc.language영어-
dc.language.isoENG-
dc.publisherInternational Water Association Publishing-
dc.titleWater quality monitoring using hybrid physical-soft sensors for river digital twins: a comprehensive review-
dc.typeArticle-
dc.publisher.location영국-
dc.identifier.doi10.2166/wst.2025.145-
dc.identifier.scopusid2-s2.0-105023555981-
dc.identifier.wosid001602508200001-
dc.identifier.bibliographicCitationWater Science and Technology, v.92, no.9, pp 1286 - 1307-
dc.citation.titleWater Science and Technology-
dc.citation.volume92-
dc.citation.number9-
dc.citation.startPage1286-
dc.citation.endPage1307-
dc.type.docTypeReview-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaEnvironmental Sciences & Ecology-
dc.relation.journalResearchAreaWater Resources-
dc.relation.journalWebOfScienceCategoryEngineering, Environmental-
dc.relation.journalWebOfScienceCategoryEnvironmental Sciences-
dc.relation.journalWebOfScienceCategoryWater Resources-
dc.subject.keywordPlusSUSPENDED SEDIMENT CONCENTRATION-
dc.subject.keywordPlusCHLOROPHYLL-A-
dc.subject.keywordPlusIN-SITU-
dc.subject.keywordPlusVARIABILITY-
dc.subject.keywordPlusCALIBRATION-
dc.subject.keywordPlusINVERSION-
dc.subject.keywordPlusNUTRIENT-
dc.subject.keywordPlusMODELS-
dc.subject.keywordPlusAREA-
dc.subject.keywordPlusLAKE-
dc.subject.keywordAuthordigital twin-
dc.subject.keywordAuthormachine learning-
dc.subject.keywordAuthorphysical sensors-
dc.subject.keywordAuthorsoft sensors-
dc.subject.keywordAuthorwater quality monitoring-
Files in This Item
There are no files associated with this item.
Appears in
Collections
건설환경공과대학 > 건설시스템공학과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kwon, Siyoon photo

Kwon, Siyoon
건설환경공과대학 (건설시스템공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE