Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Hierarchical Bayesian Intelligence Framework for Uncertainty Quantification and Reliability Assessment of Solid Oxide Fuel Cells

Full metadata record
DC Field Value Language
dc.contributor.authorPark, Eun-Joo-
dc.contributor.authorCheon, Yu-Jin-
dc.contributor.authorLee, Jin-Kwang-
dc.date.accessioned2025-11-10T02:30:16Z-
dc.date.available2025-11-10T02:30:16Z-
dc.date.issued2025-10-
dc.identifier.issn2169-3536-
dc.identifier.issn2169-3536-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/80731-
dc.description.abstractSolid oxide fuel cell (SOFC) stacks face reliability challenges because multiple degradation mechanisms interact with operational and environmental variability. We develop a hierarchical Bayesian framework that couples a monotone area-specific resistance (ASR) growth law with a Weibull time-to-failure model and employs a Student-t observation layer to down-weight outliers. Using multi-cell data, the approach narrows to 95 % predictive-interval widths for ASR and lifetime by up to 33 % relative to a non-hierarchical baseline, and global sensitivity analysis identifies the ASR growth rate as the dominant driver (S1 ≈ 0.84). Scenario projections quantify operational effects: hot–humid climates raise failure probability to ≈56 % versus ≈46 % under cold–dry conditions, whereas moderate load variations are negligible within normal ranges. External validation on a ∼93 000 h record shows low root-mean-square and means absolute errors with near-nominal predictive-interval coverage. Collectively, these results establish a diagnostic-to-decision workflow for reliability modeling that improves confidence in lifetime predictions and supports data-informed operation and maintenance.-
dc.format.extent18-
dc.language영어-
dc.language.isoENG-
dc.publisherInstitute of Electrical and Electronics Engineers Inc.-
dc.titleHierarchical Bayesian Intelligence Framework for Uncertainty Quantification and Reliability Assessment of Solid Oxide Fuel Cells-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1109/ACCESS.2025.3626137-
dc.identifier.scopusid2-s2.0-105020454291-
dc.identifier.wosid001611608100005-
dc.identifier.bibliographicCitationIEEE Access, v.13, pp 188084 - 188101-
dc.citation.titleIEEE Access-
dc.citation.volume13-
dc.citation.startPage188084-
dc.citation.endPage188101-
dc.type.docTypeArticle-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaTelecommunications-
dc.relation.journalWebOfScienceCategoryComputer Science, Information Systems-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryTelecommunications-
dc.subject.keywordPlusMODEL-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusPROGNOSTICS-
dc.subject.keywordPlusIMPROVEMENT-
dc.subject.keywordPlusSTACK-
dc.subject.keywordAuthorBayesian hierarchical modeling-
dc.subject.keywordAuthordegradation modeling-
dc.subject.keywordAuthorreliability analysis-
dc.subject.keywordAuthorsolid oxide fuel cells-
dc.subject.keywordAuthoruncertainty quantification-
Files in This Item
There are no files associated with this item.
Appears in
Collections
공과대학 > ETC > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Jinkwang photo

Lee, Jinkwang
공과대학 (기계융합공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE