Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Web-Based Platform for Quantitative Depression Risk Prediction via VAD Regression on Korean Text and Multi-Anchor Distance Scoring

Full metadata record
DC Field Value Language
dc.contributor.authorLim, Dongha-
dc.contributor.authorLee, Kangwon-
dc.contributor.authorJo, Junhui-
dc.contributor.authorLim, Hyeonji-
dc.contributor.authorBae, Hyeongchan-
dc.contributor.authorKang, Changgu-
dc.date.accessioned2025-11-05T05:30:15Z-
dc.date.available2025-11-05T05:30:15Z-
dc.date.issued2025-09-
dc.identifier.issn2076-3417-
dc.identifier.issn2076-3417-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/80648-
dc.description.abstractDepression risk prediction benefits from approaches that go beyond binary labels by offering interpretable, quantitative views of affective states. This study presents a web-based platform that estimates depression risk by combining Korean Valence-Arousal-Dominance (VAD) regression with a structured, multi-anchor distance scoring method. We construct a Korean VAD-labeled resource by integrating the NRC-VAD Lexicon, the AI Hub emotional dialogue corpus, and translated EmoBank entries, and fine-tune a KLUE-RoBERTa regression model to predict sentence-level VAD vectors. Depression risk is then derived as the mean Euclidean distance from the predicted VAD vector to depressive anchor vectors and normalized into an interpretable risk index. In evaluation, the approach shows strong agreement with ground truth (Pearson's r=0.87) and supports accurate risk screening when thresholded. The platform provides intuitive visual feedback for end users and monitoring tools for professionals, highlighting the practicality of integrating interpretable VAD modeling with lightweight scoring in real-world, web-based mental health support.-
dc.language영어-
dc.language.isoENG-
dc.publisherMDPI-
dc.titleWeb-Based Platform for Quantitative Depression Risk Prediction via VAD Regression on Korean Text and Multi-Anchor Distance Scoring-
dc.typeArticle-
dc.publisher.location스위스-
dc.identifier.doi10.3390/app151810170-
dc.identifier.scopusid2-s2.0-105017124813-
dc.identifier.wosid001579511700001-
dc.identifier.bibliographicCitationApplied Sciences-basel, v.15, no.18-
dc.citation.titleApplied Sciences-basel-
dc.citation.volume15-
dc.citation.number18-
dc.type.docTypeArticle-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryEngineering, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.subject.keywordAuthorValence-Arousal-Dominance (VAD)-
dc.subject.keywordAuthormulti-anchor distance scoring-
dc.subject.keywordAuthordepression risk prediction-
dc.subject.keywordAuthormental health informatics-
dc.subject.keywordAuthorquantitative affective analysis-
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kang, Chang Gu photo

Kang, Chang Gu
IT공과대학 (컴퓨터공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE