Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Extreme Gradient Boosting Model to Predict Antioxidant Activity of Extract from Ainsliaea acerifolia

Full metadata record
DC Field Value Language
dc.contributor.authorKim, Hyeon Cheol-
dc.contributor.authorLim, Woo Seok-
dc.contributor.authorHa, Si Young-
dc.contributor.authorYang, Jae-Kyung-
dc.date.accessioned2025-09-24T01:30:13Z-
dc.date.available2025-09-24T01:30:13Z-
dc.date.issued2025-11-
dc.identifier.issn1930-2126-
dc.identifier.issn1930-2126-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/80152-
dc.description.abstractA machine learning (ML)-based framework was developed for predicting and optimizing the antioxidant activity of Ainsliaea acerifolia water extracts. while the response surface methodology (RSM) is deficient in modeling nonlinear interactions. In this study, three machine learning (ML) algorithms, Extreme Gradient Boosting (XGB), Random Forest (RF), and Support Vector Machine (SVM), were evaluated using extraction variables (temperature, time, and solvent-to-solid ratio) along with flavonoid and polyphenol content as input features. Among the models evaluated, the XGB model showed the most advanced antioxidant prediction capabilities, as evidenced by its R² of 0.9835 and RMSE of 2.52 on the test data set. The biological significance of the features was explored using SHAP analysis, revealing flavonoid content and extraction temperature as key contributors. A graphical user interface (GUI) was developed to facilitate real-time prediction, enhancing accessibility for researchers and industrial users. This approach improves operational efficiency by optimizing extraction conditions, predicting antioxidant activity from data including flavonoids and polyphenols, and reducing reagent usage. This study highlights the potential of ML as a sustainable alternative for natural product optimization and lays the groundwork for future research that integrates bioactivity prediction with formulation design.-
dc.format.extent24-
dc.language영어-
dc.language.isoENG-
dc.publisherNorth Carolina University-
dc.titleExtreme Gradient Boosting Model to Predict Antioxidant Activity of Extract from Ainsliaea acerifolia-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.15376/biores.20.4.9103-9126-
dc.identifier.scopusid2-s2.0-105014938362-
dc.identifier.wosid001570777800027-
dc.identifier.bibliographicCitationBioResources, v.20, no.4, pp 9103 - 9126-
dc.citation.titleBioResources-
dc.citation.volume20-
dc.citation.number4-
dc.citation.startPage9103-
dc.citation.endPage9126-
dc.type.docTypeArticle-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryMaterials Science, Paper & Wood-
dc.subject.keywordPlusMICROWAVE-ASSISTED EXTRACTION-
dc.subject.keywordPlusRESPONSE-SURFACE METHODOLOGY-
dc.subject.keywordPlusOPTIMIZATION-
dc.subject.keywordPlusFLAVONOIDS-
dc.subject.keywordPlusCHEMISTRY-
dc.subject.keywordPlusCAPACITY-
dc.subject.keywordPlusPLANT-
dc.subject.keywordPlusACID-
dc.subject.keywordAuthorAinsliaea acerifolia-
dc.subject.keywordAuthorAntioxidant-
dc.subject.keywordAuthorExtreme gradient boosting-
dc.subject.keywordAuthorFlavonoids-
dc.subject.keywordAuthorMachine learning-
dc.subject.keywordAuthorWater extraction-
Files in This Item
There are no files associated with this item.
Appears in
Collections
농업생명과학대학 > Department of Environmental Materials Science > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Ha, Si Young photo

Ha, Si Young
농업생명과학대학 (환경재료과학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE