Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Linear and Symmetric Artificial Synapses Driven by Hydrogen Bonding for Accurate and Reliable Neuromorphic Computing

Full metadata record
DC Field Value Language
dc.contributor.authorLee, Min Jong-
dc.contributor.authorLee, Sang Heon-
dc.contributor.authorLee, Dong Gyu-
dc.contributor.authorKim, Tae Hyuk-
dc.contributor.authorCho, Yubhin-
dc.contributor.authorLee, Gyeong Min-
dc.contributor.authorYoon, Sung Su-
dc.contributor.authorKim, Seon Joong-
dc.contributor.authorAhn, Hyungju-
dc.contributor.authorLee, Tae Kyung-
dc.contributor.authorShim, Jae Won-
dc.date.accessioned2025-09-10T01:00:10Z-
dc.date.available2025-09-10T01:00:10Z-
dc.date.issued2025-11-
dc.identifier.issn0935-9648-
dc.identifier.issn1521-4095-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/79941-
dc.description.abstractNeuromorphic computing addresses the von Neumann bottleneck by integrating memory and processing to emulate synaptic behavior. Artificial synapses enable this functionality through analog conductance modulation, low-power operation, and nanoscale integration. Halide perovskites with high ionic mobilities and solution processabilities have emerged as promising materials for such devices; however, inherent stochastic ion migration and thermal instability lead to asymmetric and nonlinear characteristics, ultimately impairing their learning and inference capabilities. To overcome these limitations, this study introduces a polyvinyl alcohol (PVA)-based hydrogen-bonding interface engineering strategy to stabilize CsPbI3 artificial synapses. Density functional theory calculations and experimental analyses indicate that the hydroxyl groups in PVA form robust O─H···I− bonds with surface iodides, promoting vertical lattice ordering. This suppresses grain boundary defects and enables directional ion migration, resulting in extremely linear and symmetric optoelectronic conductance modulation (αp = 0.004, αd = 0.020), over eight fold reduction in interfacial trap density, and high-temperature retention (>104 s). When integrated into a neural network, artificial synapses show large-scale image classification accuracy within 1.62% of the theoretical limit. The proposed strategy provides a scalable pathway toward overcoming the existing limitations of artificial synapses, exhibiting high potential for application in edge AI, autonomous systems, and material-based cognitive modeling.-
dc.language영어-
dc.language.isoENG-
dc.publisherWILEY-VCH Verlag GmbH & Co. KGaA, Weinheim-
dc.titleLinear and Symmetric Artificial Synapses Driven by Hydrogen Bonding for Accurate and Reliable Neuromorphic Computing-
dc.typeArticle-
dc.publisher.location독일-
dc.identifier.doi10.1002/adma.202511728-
dc.identifier.scopusid2-s2.0-105014721485-
dc.identifier.wosid001561334000001-
dc.identifier.bibliographicCitationAdvanced Materials, v.37, no.45-
dc.citation.titleAdvanced Materials-
dc.citation.volume37-
dc.citation.number45-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.subject.keywordPlusLONG-TERM POTENTIATION-
dc.subject.keywordPlusMEMORY-
dc.subject.keywordPlusFTIR-
dc.subject.keywordPlusP300-
dc.subject.keywordAuthorhydrogen bonding-
dc.subject.keywordAuthorion migration control-
dc.subject.keywordAuthorneuromorphic computing-
dc.subject.keywordAuthorperovskite–polymer hybrid-
dc.subject.keywordAuthorsynaptic plasticity-
Files in This Item
There are no files associated with this item.
Appears in
Collections
공학계열 > Dept.of Materials Engineering and Convergence Technology > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Tae Kyung photo

Lee, Tae Kyung
대학원 (나노신소재융합공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE