Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

ANN-Based Prediction of Corrosion Behavior of Alloy 600: Implications for an Anti-Corrosion Coating Design in PWSCC Environments

Full metadata record
DC Field Value Language
dc.contributor.authorIshtiaq, Muhammad-
dc.contributor.authorWang, Xiao-Song-
dc.contributor.authorBhavani, Annabathini Geetha-
dc.contributor.authorBong, Hyuk Jong-
dc.contributor.authorReddy, Nagireddy Gari Subba-
dc.date.accessioned2025-09-09T09:00:14Z-
dc.date.available2025-09-09T09:00:14Z-
dc.date.issued2025-06-
dc.identifier.issn2079-6412-
dc.identifier.issn2079-6412-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/79929-
dc.description.abstractThe modeling of the corrosion rate of Alloy 600 in primary water stress corrosion cracking conditions (PWSCC) is a challenging task for existing as well as new structures due to the wide deviation of its composition across the worldwide PWSCC environment. The major parameters influencing the rate are temperature, stress intensity factor, pH, conductivity, ECP, Yield strength, B3(OH)3, and LiOH. The individual effects of these parameters on corrosion are known to some extent; however, the combined effect of these parameters together is complex, nonlinear, and unpredictable. Herein, we developed an Artificial Neural Network to predict the corrosion crack growth rate for any combination of the above five parameters and to better understand the effects of these parameters jointly on corrosion behavior. Three-dimensional mappings clearly reveal the complex interrelationship between the temperature and stress intensity factor at different variables, and the effect of the variables rather than a single variable on the corrosion rate of Inconel alloy 600 in PWSCC conditions. Moreover, the index of relative importance for these variables has also been presented providing deep insights for anti-corrosion coating designs in PWSCC environments.-
dc.language영어-
dc.language.isoENG-
dc.publisherMDPI AG-
dc.titleANN-Based Prediction of Corrosion Behavior of Alloy 600: Implications for an Anti-Corrosion Coating Design in PWSCC Environments-
dc.typeArticle-
dc.publisher.location스위스-
dc.identifier.doi10.3390/coatings15070749-
dc.identifier.scopusid2-s2.0-105011622493-
dc.identifier.wosid001553323200001-
dc.identifier.bibliographicCitationCoatings, v.15, no.7-
dc.citation.titleCoatings-
dc.citation.volume15-
dc.citation.number7-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMaterials Science, Coatings & Films-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.subject.keywordPlusARTIFICIAL NEURAL-NETWORK-
dc.subject.keywordPlusCRACK-GROWTH RATE-
dc.subject.keywordPlusPRIMARY WATER-
dc.subject.keywordPlusTEMPERATURE-DEPENDENCE-
dc.subject.keywordPlusRELATIVE IMPORTANCE-
dc.subject.keywordPlusSTRESS INTENSITY-
dc.subject.keywordPlusMODEL-
dc.subject.keywordPlusSTABILITY-
dc.subject.keywordPlusCHEMISTRY-
dc.subject.keywordPlusHYDROGEN-
dc.subject.keywordAuthorneural network-
dc.subject.keywordAuthorcorrosion behavior-
dc.subject.keywordAuthorcoatings-
dc.subject.keywordAuthorcomposition-
dc.subject.keywordAuthortemperature-
dc.subject.keywordAuthorstress-
Files in This Item
There are no files associated with this item.
Appears in
Collections
공과대학 > 나노신소재공학부금속재료공학전공 > Journal Articles
공학계열 > Dept.of Materials Engineering and Convergence Technology > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Reddy, N. Subba photo

Reddy, N. Subba
공과대학 (나노신소재공학부금속재료공학전공)
Read more

Altmetrics

Total Views & Downloads

BROWSE