Cited 0 time in
Thermal conductivity of individual single-crystalline F16CuPc nanoribbons
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Wen, Yue | - |
| dc.contributor.author | Cho, Jeongho | - |
| dc.contributor.author | Yu, Linfeng | - |
| dc.contributor.author | Zhao, Yi-Ming | - |
| dc.contributor.author | Wang, Jingxuan | - |
| dc.contributor.author | Shen, Lei | - |
| dc.contributor.author | Qin, Guangzhao | - |
| dc.contributor.author | Yoon, Seok Min | - |
| dc.contributor.author | Lim, Jongwoo | - |
| dc.contributor.author | Shin, Sunmi | - |
| dc.date.accessioned | 2025-09-09T05:30:10Z | - |
| dc.date.available | 2025-09-09T05:30:10Z | - |
| dc.date.issued | 2025-09 | - |
| dc.identifier.issn | 2040-3364 | - |
| dc.identifier.issn | 2040-3372 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/79891 | - |
| dc.description.abstract | Organic semiconductors are widely used in flexible electronics, optoelectronic devices, and thermoelectric systems. Among them, copper hexadecafluorophthalocyanine (F16CuPc), an n-type organic semiconductor, exhibits excellent chemical and thermal stability, making it suitable for a range of device applications. As device architectures scale down to the nanoscale, understanding the intrinsic thermal transport properties of such materials becomes critical for effective thermal management. In this work, we report the first thermal conductivity measurement of individual single-crystalline F16CuPc nanoribbons using a suspended thermometry platform. We integrated individual nanoribbons into our measurement platform and conducted temperature dependent measurements. The thermal conductivity trend indicates the crystalline status of the sample. All samples exhibit thermal conductivity values of nearly 0.3 W m-1 K-1 at room temperature, attributed to short phonon mean free paths and weak intermolecular interactions. Molecular dynamics simulations further support the experimental trends and reveal anisotropic thermal transport characteristics. These results provide valuable insights into heat conduction mechanisms in small-molecule organic semiconductors and offer guidance for thermal design in future nanoscale device integration. | - |
| dc.format.extent | 7 | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | Royal Society of Chemistry | - |
| dc.title | Thermal conductivity of individual single-crystalline F16CuPc nanoribbons | - |
| dc.type | Article | - |
| dc.publisher.location | 영국 | - |
| dc.identifier.doi | 10.1039/d5nr02286j | - |
| dc.identifier.scopusid | 2-s2.0-105016476207 | - |
| dc.identifier.wosid | 001561820600001 | - |
| dc.identifier.bibliographicCitation | Nanoscale, v.17, no.36, pp 20982 - 20988 | - |
| dc.citation.title | Nanoscale | - |
| dc.citation.volume | 17 | - |
| dc.citation.number | 36 | - |
| dc.citation.startPage | 20982 | - |
| dc.citation.endPage | 20988 | - |
| dc.type.docType | Article | - |
| dc.description.isOpenAccess | N | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalResearchArea | Chemistry | - |
| dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
| dc.relation.journalResearchArea | Materials Science | - |
| dc.relation.journalResearchArea | Physics | - |
| dc.relation.journalWebOfScienceCategory | Chemistry, Multidisciplinary | - |
| dc.relation.journalWebOfScienceCategory | Nanoscience & Nanotechnology | - |
| dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
| dc.relation.journalWebOfScienceCategory | Physics, Applied | - |
| dc.subject.keywordPlus | TRANSPORT | - |
| dc.subject.keywordPlus | DEPOSITION | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
