Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Artificial Neural Networks for Modeling Harmful Algal Blooms: A Review

Full metadata record
DC Field Value Language
dc.contributor.authorPaturi, Uma Maheshwera Reddy-
dc.contributor.authorRamesh C.-
dc.contributor.authorMuppala, Manjusha-
dc.contributor.authorMekala, Rishitha Reddy-
dc.contributor.authorKasu, Shriya Reddy-
dc.contributor.authorReddy, N. S.-
dc.date.accessioned2025-09-08T07:00:11Z-
dc.date.available2025-09-08T07:00:11Z-
dc.date.issued2025-07-
dc.identifier.issn0173-9565-
dc.identifier.issn1439-0485-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/79837-
dc.description.abstractHarmful algal blooms (HABs) are a growing environmental concern that require better understanding, prediction, and study. Even though photosynthesizing algae produce 70% of atmospheric oxygen, their unexpected outbreaks can harm the environment. A delicate interplay of various environmental factors drives the intricate dynamics of algal blooms. Artificial neural network (ANN) models provide profound insights into the nonlinear and unpredictable behavior of algal blooms. Neural networks can also improve prediction accuracy, pattern recognition, species identification, and correlation analysis. The ANN's ability to comprehend and process diverse datasets, along with its adaptability, makes it suitable for real-time monitoring systems, allowing for early warnings and proactive mitigation in HAB management. This review paper summarizes recent findings and demonstrates how ANNs contribute to HAB research. Based on this review, we discuss the challenges of using ANNs in this context and offer recommendations for future research directions to explore emerging trends in the field.-
dc.language영어-
dc.language.isoENG-
dc.publisherBlackwell Publishing Inc.-
dc.titleArtificial Neural Networks for Modeling Harmful Algal Blooms: A Review-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1111/maec.70037-
dc.identifier.scopusid2-s2.0-105011715047-
dc.identifier.wosid001562415600002-
dc.identifier.bibliographicCitationMarine Ecology, v.46, no.4-
dc.citation.titleMarine Ecology-
dc.citation.volume46-
dc.citation.number4-
dc.type.docTypeReview-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMarine & Freshwater Biology-
dc.relation.journalWebOfScienceCategoryMarine & Freshwater Biology-
dc.subject.keywordPlusCHLOROPHYLL-A CONCENTRATIONS-
dc.subject.keywordPlusWASTE-WATER TREATMENT-
dc.subject.keywordPlusPHYTOPLANKTON COMMUNITY-
dc.subject.keywordPlusLAKE-
dc.subject.keywordPlusPREDICTION-
dc.subject.keywordPlusBAY-
dc.subject.keywordPlusMANAGEMENT-
dc.subject.keywordPlusGROWTH-
dc.subject.keywordPlusKARLODINIUM-
dc.subject.keywordPlusCULTIVATION-
dc.subject.keywordAuthorArtificial Neural Networks-
dc.subject.keywordAuthorChlorophyll-a-
dc.subject.keywordAuthorHarmful Algal Blooms-
dc.subject.keywordAuthorModeling-
dc.subject.keywordAuthorPhytoplankton-
dc.subject.keywordAuthorReview-
Files in This Item
There are no files associated with this item.
Appears in
Collections
공과대학 > 나노신소재공학부금속재료공학전공 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Reddy, N. Subba photo

Reddy, N. Subba
공과대학 (나노신소재공학부금속재료공학전공)
Read more

Altmetrics

Total Views & Downloads

BROWSE