Cited 0 time in
Continuity of solutions to complex Monge–Ampère equations on compact Kähler spaces
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Cho, Ye-Won Luke | - |
| dc.contributor.author | Choi, Young-Jun | - |
| dc.date.accessioned | 2025-09-05T01:00:10Z | - |
| dc.date.available | 2025-09-05T01:00:10Z | - |
| dc.date.issued | 2025-09 | - |
| dc.identifier.issn | 0025-5831 | - |
| dc.identifier.issn | 1432-1807 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/79819 | - |
| dc.description.abstract | We prove the continuity of bounded solutions to complex Monge–Ampère equations on reduced, locally irreducible compact Kähler spaces. This in particular implies that any singular Kähler–Einstein potentials constructed in Eyssidieux et al. (J Am Math Soc 22(3):607–639, 2009) and Song and Tian (Inv Math 207:519–595, 2017), Tsuji (Math Ann 281(1):123–133, 1988), Tian and Zhang (Chin Ann Math Ser 27B(2):179–192, 2006) are continuous. We also provide an affirmative answer to a conjecture in Eyssidieux et al. (J Am Math Soc 22(3):607–639, 2009) by showing that a resolution of any compact normal Kähler space satisfies the smooth approximation property. Finally, we settle the continuity of the potentials of the weak Kähler–Ricci flows Guedj et al. (Geom Top 24:1225–1296, 2020) and Song and Tian (Inv Math 207:519–595, 2017) on compact Kähler varieties with log terminal singularities. | - |
| dc.format.extent | 24 | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | Springer Verlag | - |
| dc.title | Continuity of solutions to complex Monge–Ampère equations on compact Kähler spaces | - |
| dc.type | Article | - |
| dc.publisher.location | 독일 | - |
| dc.identifier.doi | 10.1007/s00208-025-03268-6 | - |
| dc.identifier.scopusid | 2-s2.0-105013990958 | - |
| dc.identifier.wosid | 001556032700001 | - |
| dc.identifier.bibliographicCitation | Mathematische Annalen, v.393, no.1, pp 807 - 830 | - |
| dc.citation.title | Mathematische Annalen | - |
| dc.citation.volume | 393 | - |
| dc.citation.number | 1 | - |
| dc.citation.startPage | 807 | - |
| dc.citation.endPage | 830 | - |
| dc.type.docType | Article | - |
| dc.description.isOpenAccess | N | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalResearchArea | Mathematics | - |
| dc.relation.journalWebOfScienceCategory | Mathematics | - |
| dc.subject.keywordPlus | HOLDER CONTINUOUS SOLUTIONS | - |
| dc.subject.keywordPlus | KAHLER-RICCI FLOW | - |
| dc.subject.keywordPlus | RESOLUTION | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
