Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

The Impact of Personalized Recommendation Systems on Consumer Purchase Decisions Under Data Law Frameworks: An Empirical Study Based on E-Commerce User Behavior Data

Full metadata record
DC Field Value Language
dc.contributor.authorHuang, Silong-
dc.contributor.authorLiu, Zichen-
dc.date.accessioned2025-08-06T05:30:12Z-
dc.date.available2025-08-06T05:30:12Z-
dc.date.issued2025-01-
dc.identifier.issn1546-2234-
dc.identifier.issn1546-5012-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/79612-
dc.description.abstractIn the context of data law compliance requirements, personalized recommendation systems have become integral to modern e-commerce platforms, yet most existing models rely solely on behavioral data and overlook the affective and cognitive dimensions of user decision-making. This limitation leads to inadequate personalization, poor generalization in cold-start scenarios, and a lack of real-time adaptability under data law frameworks. To address these challenges, the paper proposes MTL-SA, a multitask learning framework that integrates behavioral signals, sentiment-aware representations, and reinforcement learning into a unified recommendation architecture. This study demonstrates that integrating affective and behavioral feedback through multitask architectures can significantly enhance the accuracy, robustness, and human alignment of personalized recommendation systems under data legal frameworks.-
dc.language영어-
dc.language.isoENG-
dc.publisherIdea Group Publishing-
dc.titleThe Impact of Personalized Recommendation Systems on Consumer Purchase Decisions Under Data Law Frameworks: An Empirical Study Based on E-Commerce User Behavior Data-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.4018/JOEUC.385731-
dc.identifier.scopusid2-s2.0-105012133629-
dc.identifier.wosid001538427800005-
dc.identifier.bibliographicCitationJournal of Organizational and End User Computing, v.37, no.1-
dc.citation.titleJournal of Organizational and End User Computing-
dc.citation.volume37-
dc.citation.number1-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassssci-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaInformation Science & Library Science-
dc.relation.journalResearchAreaBusiness & Economics-
dc.relation.journalWebOfScienceCategoryComputer Science, Information Systems-
dc.relation.journalWebOfScienceCategoryInformation Science & Library Science-
dc.relation.journalWebOfScienceCategoryManagement-
dc.subject.keywordAuthorMulti-task Learning-
dc.subject.keywordAuthorSentiment-Aware Recommendation-
dc.subject.keywordAuthorReinforcement Learning-
dc.subject.keywordAuthorUser Satisfaction Prediction-
dc.subject.keywordAuthorPersonalized E-Commerce Systems-
dc.subject.keywordAuthorData Legal-
Files in This Item
There are no files associated with this item.
Appears in
Collections
학과간협동과정 > 지식재산융합학과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE