Detailed Information

Cited 1 time in webofscience Cited 1 time in scopus
Metadata Downloads

Ionically Conductive Elastic Polymer Binder for Ultrahigh Loading Electrode in High-Energy-Density Lithium Batteries

Full metadata record
DC Field Value Language
dc.contributor.authorHan, Dong-Yeob-
dc.contributor.authorMasud, Yeongseok-
dc.contributor.authorKim, Yeongseok-
dc.contributor.authorKim, Saehyun-
dc.contributor.authorLee, Dong Gyu-
dc.contributor.authorNo, Junhyeok-
dc.contributor.authorChoi, Hee Cheul-
dc.contributor.authorLee, Tae Kyung-
dc.contributor.authorKim, Youn Soo-
dc.contributor.authorPark, Soojin-
dc.date.accessioned2025-07-15T07:00:08Z-
dc.date.available2025-07-15T07:00:08Z-
dc.date.issued2025-10-
dc.identifier.issn0935-9648-
dc.identifier.issn1521-4095-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/79419-
dc.description.abstractDespite the increasing demand for high-energy-density lithium batteries, the development of high-mass-loading electrodes remains challenged by structural instability and poor charge transfer. Herein, an ionically conductive elastic polymer (ICEP) binder, designed to enable the fabrication of ultrahigh mass-loading Ni-rich layered cathodes (LiNi0.8Co0.1Mn0.1O2, NCM811), is introduced. The ICEP binder integrates mechanical elasticity, strong adhesion, and ionic conductivity through diverse functional groups, addressing challenges in high-mass-loading electrode fabrication. Hydrogen bonding between the ICEP binder and NCM811 particles ensures uniform electrode morphology, forming a stable cathode-electrolyte interphase (CEI). This stable interface mitigates surface side reactions, suppresses phase transitions in NCM811, and improves long-term electrochemical stability. Additionally, the ICEP binder enhances Li-ion diffusivity, reduces interphase resistance, and promotes faster electrochemical kinetics, while preventing solvent-drying-induced cracking. As a result, high-mass-loading electrodes (62.4 mg cm(-)2, 12.5 mAh cm(-)2) are successfully fabricated with the ICEP binder and demonstrate 94.6% capacity retention. Furthermore, a double-stacked pouch-type lithium metal full cell incorporating ICEP-based cathodes achieves energy densities of 377.6 Wh kgcell(-)1 and 1016.8 Wh Lcell(-)1 (including package materials), setting new benchmarks for lithium metal batteries. These findings establish ICEP as a highly effective binder for next-generation high-energy-density batteries, offering a scalable and commercially viable solution for ultrahigh-loading cathodes.-
dc.language영어-
dc.language.isoENG-
dc.publisherWILEY-VCH Verlag GmbH & Co. KGaA, Weinheim-
dc.titleIonically Conductive Elastic Polymer Binder for Ultrahigh Loading Electrode in High-Energy-Density Lithium Batteries-
dc.typeArticle-
dc.publisher.location독일-
dc.identifier.doi10.1002/adma.202506266-
dc.identifier.scopusid2-s2.0-105009941328-
dc.identifier.wosid001523745400001-
dc.identifier.bibliographicCitationAdvanced Materials, v.37, no.42-
dc.citation.titleAdvanced Materials-
dc.citation.volume37-
dc.citation.number42-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.subject.keywordPlusNETWORK-
dc.subject.keywordAuthorcathode binders-
dc.subject.keywordAuthorhigh-energy-density lithium batteries-
dc.subject.keywordAuthorionically conductive polymers-
dc.subject.keywordAuthornickel-rich layered cathodes-
dc.subject.keywordAuthorultrahigh mass loadings-
Files in This Item
There are no files associated with this item.
Appears in
Collections
공학계열 > Dept.of Materials Engineering and Convergence Technology > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Tae Kyung photo

Lee, Tae Kyung
대학원 (나노신소재융합공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE