Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

설명가능 인공지능을 활용한 코스피 지수 변동성 예측 연구

Full metadata record
DC Field Value Language
dc.contributor.author이우식-
dc.date.accessioned2025-07-11T04:30:10Z-
dc.date.available2025-07-11T04:30:10Z-
dc.date.issued2025-06-
dc.identifier.issn1226-833x-
dc.identifier.issn2765-5415-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/79344-
dc.description.abstractThis study compares the performance of a statistical model (GARCH) and a machine learning model (XGBoost) in predicting the volatility of the KOSPI index, while employing Explainable Artificial Intelligence (XAI) to identify the key volatility drivers. Using daily data from 2000 to 2024, this study finds that XGBoost outperforms GARCH in accuracy metrics. This performance gap widens when comparing different error metrics, with XGBoost showing 1.61 times lower error in RMSE and an even greater 2.88 times improvement in MAPE, suggesting machine learning approaches better capture the complex, non-linear patterns in equity market volatility. Both feature importance analyses using gain and SHAP values consistently identify the previous day's volatility as the most critical predictor, aligning with the volatility clustering in financial theory. This paper highlights how combining machine learning with SHAP enhances both performance and interpretability in volatility forecasting, providing a practical framework for implementing explainable machine learning solutions in financial risk management.-
dc.format.extent8-
dc.language한국어-
dc.language.isoKOR-
dc.publisher한국산업융합학회-
dc.title설명가능 인공지능을 활용한 코스피 지수 변동성 예측 연구-
dc.title.alternativeA Study on KOSPI Volatility Prediction Using eXplainable Artificial Intelligence-
dc.typeArticle-
dc.publisher.location대한민국-
dc.identifier.bibliographicCitation한국산업융합학회논문집, v.28, no.3, pp 747 - 754-
dc.citation.title한국산업융합학회논문집-
dc.citation.volume28-
dc.citation.number3-
dc.citation.startPage747-
dc.citation.endPage754-
dc.identifier.kciidART003215276-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClasskci-
dc.subject.keywordAuthorQuantitative Finance-
dc.subject.keywordAuthorBusiness Analytics-
dc.subject.keywordAuthorFinancial Time Series-
dc.subject.keywordAuthorXAI-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Business Administration > 스마트유통물류학과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Woo Sik photo

Lee, Woo Sik
경영대학 (스마트유통물류학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE