Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

딥러닝 기반 실시간 어류 탐지 알고리즘 구현

Full metadata record
DC Field Value Language
dc.contributor.author이용환-
dc.contributor.author김흥준-
dc.date.accessioned2025-07-11T02:00:06Z-
dc.date.available2025-07-11T02:00:06Z-
dc.date.issued2025-06-
dc.identifier.issn1738-2270-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/79301-
dc.description.abstractThis study proposes a deep learning-based approach for real-time fish detection under underwater environments. By integrating model compression techniques and transfer learning into a YOLOv3 framework, the system aims to achieve efficient and practical detection performance even on resource-constrained platforms. The proposed approach emphasizes adaptability to underwater imaging challenges and potential deployment in marine monitoring systems. This work contributes to the field by presenting a scalable framework for applying deep learning to real-world aquatic ecological monitoring. Furthermore, the proposed method offers potential applications in low-power semiconductor and display-based embedded systems for real-time visual detection.-
dc.format.extent6-
dc.language영어-
dc.language.isoENG-
dc.publisher한국반도체디스플레이기술학회-
dc.title딥러닝 기반 실시간 어류 탐지 알고리즘 구현-
dc.title.alternativeImplementation of Real-time Fish Detection Approach using Deep Learning-
dc.typeArticle-
dc.publisher.location대한민국-
dc.identifier.bibliographicCitation반도체디스플레이기술학회지, v.24, no.2, pp 117 - 122-
dc.citation.title반도체디스플레이기술학회지-
dc.citation.volume24-
dc.citation.number2-
dc.citation.startPage117-
dc.citation.endPage122-
dc.identifier.kciidART003221561-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClasskci-
dc.subject.keywordAuthorFish Detection-
dc.subject.keywordAuthorYOLOv3-
dc.subject.keywordAuthorDeep Learning-
dc.subject.keywordAuthorUnderwater Vision-
dc.subject.keywordAuthorModel Pruning-
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Heung Jun photo

Kim, Heung Jun
IT공과대학 (컴퓨터공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE