Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Lysosomal targeting of liposomes with acidic pH and Cathepsin B induces protein aggregate clearanceopen access

Authors
Jeon, MinsolKim, Da-EunChoi, So YoungKim, SeoyoungKim, SeongchanLee, HyojinKim, Hyunkyung
Issue Date
Jun-2025
Publisher
BioMed Central
Keywords
Proteinopathy; Lysosome; Aggregate clearance; Cathepsin; Autophagy
Citation
Cell Communication and Signaling, v.23, no.1
Indexed
SCIE
SCOPUS
Journal Title
Cell Communication and Signaling
Volume
23
Number
1
URI
https://scholarworks.gnu.ac.kr/handle/sw.gnu/79116
DOI
10.1186/s12964-025-02310-z
ISSN
1478-811X
1478-811X
Abstract
The autophagy-lysosomal pathway is a cellular degradation mechanism that regulates protein quality by eliminating aggregates and maintaining normal protein function. It has been reported that aging itself reduces lysosomal proteolytic activity in age-related neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease. Reduction in lysosomal function may underlie the accumulation of protein aggregates such as amyloid beta (A beta), tau, and alpha-synuclein. Some of these protein aggregates may cause additional lysosomal dysfunction and create a vicious cycle leading to a gradual increase in protein aggregation. In this study, liposome-based lysosomal pH-modulating particles (LPPs), containing a liquid solution to adjust lysosomal pH, have been developed to restore lysosomal function. The results demonstrate that acidic LPPs effectively restore lysosomal function by recovering lysosomal pH and facilitating the removal of protein aggregates. These findings demonstrated that acidic LPPs could effectively recover the abnormal lysosomal function via restoration of lysosomal pH and enhance the clearance of protein aggregates. Furthermore, the simultaneous introduction of Cathepsin B (CTSB) proteins and acidic LPP revealed a synergistic effect, promoting lysosomal pH recovery and enhancing aggregates removal. These findings suggest a novel strategy for improving lysosomal clearance activity in proteinopathies.
Files in This Item
There are no files associated with this item.
Appears in
Collections
약학대학 > 약학과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Seongchan photo

Kim, Seongchan
약학대학 (약학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE