Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

A note on $lanbda$-Bernoulli numbers of the second kind

Full metadata record
DC Field Value Language
dc.contributor.author김대산-
dc.contributor.author김태균-
dc.contributor.author권종겸-
dc.contributor.author이현석-
dc.date.accessioned2022-12-26T13:47:20Z-
dc.date.available2022-12-26T13:47:20Z-
dc.date.issued2020-03-
dc.identifier.issn1229-3067-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/7903-
dc.description.abstractIn this paper, we study the λ -Bernoulli numbers of the second kind which are defined as an integral of the λ -analogue of the falling factorial sequence and express them in terms of the λ -Stirling numbers of the first kind. Then we investigate the generalized λ -Bernoulli numbers of the second kind given as a multiple integral on the unit cube and show, among other things, the generating function of those numbers can be expressed in term of the recently introduced poly- exponential function by Kim-Kim. Finally, we introduce the higher-order λ -Bernoulli numbers of the second kind, again given by another multiple integral on the unit cube, and show those numbers can be given by the degenerate Stirling numbers of the second.-
dc.format.extent10-
dc.language영어-
dc.language.isoENG-
dc.publisher장전수학회-
dc.titleA note on $lanbda$-Bernoulli numbers of the second kind-
dc.title.alternativeA note on $lanbda$-Bernoulli numbers of the second kind-
dc.typeArticle-
dc.publisher.location대한민국-
dc.identifier.bibliographicCitationAdvanced Studies in Contemporary Mathematics, v.30, no.2, pp 187 - 196-
dc.citation.titleAdvanced Studies in Contemporary Mathematics-
dc.citation.volume30-
dc.citation.number2-
dc.citation.startPage187-
dc.citation.endPage196-
dc.identifier.kciidART002583049-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscopus-
dc.description.journalRegisteredClasskci-
dc.subject.keywordAuthordegenerate cosine-Euler polynomials-
dc.subject.keywordAuthordegenerate sine-Euler polynomials-
dc.subject.keywordAuthordegenerate cosine-Bernoulli polynomials-
dc.subject.keywordAuthordegenerate sine-Bernoulli polynomials-
dc.subject.keywordAuthordegenerate cosine-polynomials-
dc.subject.keywordAuthordegenerate sine- polynomials-
Files in This Item
There are no files associated with this item.
Appears in
Collections
사범대학 > 수학교육과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kwon, Jong Kyum photo

Kwon, Jong Kyum
사범대학 (수학교육과)
Read more

Altmetrics

Total Views & Downloads

BROWSE