Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Explainable AI based feature selection in cancer RNA-seq

Full metadata record
DC Field Value Language
dc.contributor.authorSeo, Hyein-
dc.contributor.authorPark, Jae-Ho-
dc.contributor.authorLee, Jangho-
dc.contributor.authorChung, Byung Chang-
dc.date.accessioned2025-06-12T06:30:56Z-
dc.date.available2025-06-12T06:30:56Z-
dc.date.issued2025-08-
dc.identifier.issn2405-9595-
dc.identifier.issn2405-9595-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/78808-
dc.description.abstractIdentifying informative features in bioinformatics is challenging due to their small proportion within large datasets. We propose a scalable and interpretable feature selection framework for cancer RNA-seq by transforming non-image bio-data into 2D formats and applying convolutional neural networks (CNNs) with transfer learning for efficient classification. Explainable artificial intelligence (XAI) techniques identify and prioritize important features, while principal component analysis (PCA) determines the optimal number of selected features, ensuring transparency and reliability. Comparative analysis of CNN and XAI highlights the effectiveness of our approach, providing a robust framework for high-dimensional genomic data analysis with applications in cancer diagnosis and prognosis. © 2025-
dc.format.extent8-
dc.language영어-
dc.language.isoENG-
dc.publisher한국통신학회-
dc.titleExplainable AI based feature selection in cancer RNA-seq-
dc.typeArticle-
dc.publisher.location대한민국-
dc.identifier.doi10.1016/j.icte.2025.05.004-
dc.identifier.scopusid2-s2.0-105006591408-
dc.identifier.wosid001584359800011-
dc.identifier.bibliographicCitationICT Express, v.11, no.4, pp 603 - 610-
dc.citation.titleICT Express-
dc.citation.volume11-
dc.citation.number4-
dc.citation.startPage603-
dc.citation.endPage610-
dc.type.docTypeArticle-
dc.identifier.kciidART003232159-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.description.journalRegisteredClasskci-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaTelecommunications-
dc.relation.journalWebOfScienceCategoryComputer Science, Information Systems-
dc.relation.journalWebOfScienceCategoryTelecommunications-
dc.subject.keywordAuthorCNN-
dc.subject.keywordAuthorFeature selection-
dc.subject.keywordAuthorRNA-seq-
dc.subject.keywordAuthorTransfer learning-
dc.subject.keywordAuthorXAI-
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Chung, Byung Chang photo

Chung, Byung Chang
IT공과대학 (AI정보공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE