Cited 0 time in
Explainable AI based feature selection in cancer RNA-seq
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Seo, Hyein | - |
| dc.contributor.author | Park, Jae-Ho | - |
| dc.contributor.author | Lee, Jangho | - |
| dc.contributor.author | Chung, Byung Chang | - |
| dc.date.accessioned | 2025-06-12T06:30:56Z | - |
| dc.date.available | 2025-06-12T06:30:56Z | - |
| dc.date.issued | 2025-08 | - |
| dc.identifier.issn | 2405-9595 | - |
| dc.identifier.issn | 2405-9595 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/78808 | - |
| dc.description.abstract | Identifying informative features in bioinformatics is challenging due to their small proportion within large datasets. We propose a scalable and interpretable feature selection framework for cancer RNA-seq by transforming non-image bio-data into 2D formats and applying convolutional neural networks (CNNs) with transfer learning for efficient classification. Explainable artificial intelligence (XAI) techniques identify and prioritize important features, while principal component analysis (PCA) determines the optimal number of selected features, ensuring transparency and reliability. Comparative analysis of CNN and XAI highlights the effectiveness of our approach, providing a robust framework for high-dimensional genomic data analysis with applications in cancer diagnosis and prognosis. © 2025 | - |
| dc.format.extent | 8 | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | 한국통신학회 | - |
| dc.title | Explainable AI based feature selection in cancer RNA-seq | - |
| dc.type | Article | - |
| dc.publisher.location | 대한민국 | - |
| dc.identifier.doi | 10.1016/j.icte.2025.05.004 | - |
| dc.identifier.scopusid | 2-s2.0-105006591408 | - |
| dc.identifier.wosid | 001584359800011 | - |
| dc.identifier.bibliographicCitation | ICT Express, v.11, no.4, pp 603 - 610 | - |
| dc.citation.title | ICT Express | - |
| dc.citation.volume | 11 | - |
| dc.citation.number | 4 | - |
| dc.citation.startPage | 603 | - |
| dc.citation.endPage | 610 | - |
| dc.type.docType | Article | - |
| dc.identifier.kciid | ART003232159 | - |
| dc.description.isOpenAccess | Y | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.description.journalRegisteredClass | kci | - |
| dc.relation.journalResearchArea | Computer Science | - |
| dc.relation.journalResearchArea | Telecommunications | - |
| dc.relation.journalWebOfScienceCategory | Computer Science, Information Systems | - |
| dc.relation.journalWebOfScienceCategory | Telecommunications | - |
| dc.subject.keywordAuthor | CNN | - |
| dc.subject.keywordAuthor | Feature selection | - |
| dc.subject.keywordAuthor | RNA-seq | - |
| dc.subject.keywordAuthor | Transfer learning | - |
| dc.subject.keywordAuthor | XAI | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
