Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Evaluating Machine Learning Models for Predicting Hardness of AlCoCrCuFeNi High-Entropy Alloys

Full metadata record
DC Field Value Language
dc.contributor.authorPaturi, Uma Maheshwera Reddy-
dc.contributor.authorIshtiaq, Muhammad-
dc.contributor.authorLakshmi Narayana, Pasupuleti-
dc.contributor.authorMaurya, Anoop Kumar-
dc.contributor.authorChoi, Seong-Woo-
dc.contributor.authorReddy, Nagireddy Gari Subba-
dc.date.accessioned2025-06-12T06:02:11Z-
dc.date.available2025-06-12T06:02:11Z-
dc.date.issued2025-04-
dc.identifier.issn2073-4352-
dc.identifier.issn2073-4352-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/78724-
dc.description.abstractThis study evaluates the predictive capabilities of various machine learning (ML) algorithms for estimating the hardness of AlCoCrCuFeNi high-entropy alloys (HEAs) based on their compositional variables. Among the ML methods explored, a backpropagation neural network (BPNN) model with a sigmoid activation function exhibited superior predictive accuracy compared to other algorithms. The BPNN model achieved excellent correlation coefficients (R2) of 99.54% and 96.39% for training (116 datasets) and cross-validation (39 datasets), respectively. Testing of the BPNN model on an independent dataset (14 alloys) further confirmed its high predictive reliability. Additionally, the developed BPNN model facilitated a comprehensive analysis of the individual effects of alloying elements on hardness, providing valuable metallurgical insights. This comparative evaluation highlights the potential of BPNN as an effective predictive tool for material scientists aiming to understand composition-property relationships in HEAs.-
dc.language영어-
dc.language.isoENG-
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)-
dc.titleEvaluating Machine Learning Models for Predicting Hardness of AlCoCrCuFeNi High-Entropy Alloys-
dc.typeArticle-
dc.publisher.location스위스-
dc.identifier.doi10.3390/cryst15050404-
dc.identifier.scopusid2-s2.0-105006685733-
dc.identifier.wosid001495561500001-
dc.identifier.bibliographicCitationCrystals, v.15, no.5-
dc.citation.titleCrystals-
dc.citation.volume15-
dc.citation.number5-
dc.type.docTypeArticle-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaCrystallography-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryCrystallography-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.subject.keywordPlusDESIGN-
dc.subject.keywordPlusSYSTEM-
dc.subject.keywordPlusPHASE-
dc.subject.keywordAuthormachine learning algorithms-
dc.subject.keywordAuthorbackpropagation-
dc.subject.keywordAuthorartificial neural networks-
dc.subject.keywordAuthorhigh-entropy alloys-
dc.subject.keywordAuthorhardness-
Files in This Item
There are no files associated with this item.
Appears in
Collections
공과대학 > 나노신소재공학부금속재료공학전공 > Journal Articles
공학계열 > Dept.of Materials Engineering and Convergence Technology > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Reddy, N. Subba photo

Reddy, N. Subba
공과대학 (나노신소재공학부금속재료공학전공)
Read more

Altmetrics

Total Views & Downloads

BROWSE