Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

High-entropy Cr(NiFeCoV)2O4 catalysts via CO2 laser thermal shock: advancing electrochemical water oxidation with multi-metal synergy

Full metadata record
DC Field Value Language
dc.contributor.authorKannan Anbarasu, Sharanya-
dc.contributor.authorSenthil, Raja Arumugam-
dc.contributor.authorJung, Sieon-
dc.contributor.authorKumar, Anuj-
dc.contributor.authorUbaidullah, Mohd-
dc.contributor.authorChoi, Myong Yong-
dc.date.accessioned2025-06-12T06:01:42Z-
dc.date.available2025-06-12T06:01:42Z-
dc.date.issued2025-08-
dc.identifier.issn2050-7488-
dc.identifier.issn2050-7496-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/78679-
dc.description.abstractElectrocatalytic overall water splitting (OWS) is a promising technology for sustainable hydrogen (H2) production. However, its practical application is hindered by the sluggish kinetics of the anodic oxygen evolution reaction (OER). To address this challenge, high-entropy oxides have emerged as promising OER electrocatalysts owing to their tunable composition and synergistic effects among constituent elements. In this study, we present the fabrication of a spinel-structured high-entropy Cr(NiFeCoV)2O4 (HE-Cr(NiFeCoV)2O4) catalyst using a rapid continuous-wave CO2 laser thermal-shock method. The resulting HE-Cr(NiFeCoV)2O4 catalyst demonstrated excellent electrochemical OER performance in 1 M KOH electrolyte, achieving a low overpotential of 284 mV at 10 mA cm-2 and maintaining long-term stability over 100 h at 50 mA cm-2. Furthermore, an OWS electrolyzer assembled with HE-Cr(NiFeCoV)2O4 as the anode and Pt/C as the cathode operated at a low cell voltage of 1.57 V at 10 mA cm-2 for efficient H2 production. In situ Raman spectroscopy confirmed the surface formation of active FeOOH species during OER, while density functional theory calculations revealed how the multi-metal synergy within a single lattice modulated the electronic structure, thereby enhancing the OER activity of Cr(NiFeCoV)2O4. This study establishes a cost-effective and energy-efficient pathway for developing advanced multicomponent electrocatalysts for clean energy applications.-
dc.format.extent11-
dc.language영어-
dc.language.isoENG-
dc.publisherRoyal Society of Chemistry-
dc.titleHigh-entropy Cr(NiFeCoV)2O4 catalysts via CO2 laser thermal shock: advancing electrochemical water oxidation with multi-metal synergy-
dc.typeArticle-
dc.publisher.location영국-
dc.identifier.doi10.1039/d5ta01573a-
dc.identifier.scopusid2-s2.0-105005773058-
dc.identifier.wosid001491480000001-
dc.identifier.bibliographicCitationJournal of Materials Chemistry A, v.13, no.31, pp 25345 - 25355-
dc.citation.titleJournal of Materials Chemistry A-
dc.citation.volume13-
dc.citation.number31-
dc.citation.startPage25345-
dc.citation.endPage25355-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
Files in This Item
There are no files associated with this item.
Appears in
Collections
자연과학대학 > 화학과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Altmetrics

Total Views & Downloads

BROWSE