Detailed Information

Cited 1 time in webofscience Cited 0 time in scopus
Metadata Downloads

Equivalence and convergence analysis of fixed point iterative schemes using higher order averaged mappings

Full metadata record
DC Field Value Language
dc.contributor.authorZhou, Mi-
dc.contributor.authorAnjum, Rizwan-
dc.contributor.authorGuo, Liang-
dc.contributor.authorDin, Muhammad-
dc.contributor.authorCho, Yeol Je-
dc.date.accessioned2025-05-26T09:00:07Z-
dc.date.available2025-05-26T09:00:07Z-
dc.date.issued2025-05-
dc.identifier.issn1017-1398-
dc.identifier.issn1572-9265-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/78616-
dc.description.abstractThis study establishes the convergence equivalence of Picard, Mann, Ishikawa, and Picard-Mann hybrid schemes when addressing weak enriched F-contraction and weak enriched F '-contraction, as defined by Zhou et al. (2024) [Journal of Inequalities and Applications (2024) 2024:23]. Our findings consolidate and expand upon existing contraction mapping methodologies within normed spaces. Numerical experiments validate our theoretical results. Moreover, we present stability analyses and dependence results for the iterative schemes. Finally, we apply general convergence principles for Krasnoselskii-type algorithms to variational inequality and split feasibility problems.-
dc.language영어-
dc.language.isoENG-
dc.publisherBaltzer Science Publishers B.V.-
dc.titleEquivalence and convergence analysis of fixed point iterative schemes using higher order averaged mappings-
dc.typeArticle-
dc.publisher.location네델란드-
dc.identifier.doi10.1007/s11075-025-02080-2-
dc.identifier.scopusid2-s2.0-105005111230-
dc.identifier.wosid001488726600001-
dc.identifier.bibliographicCitationNumerical Algorithms-
dc.citation.titleNumerical Algorithms-
dc.type.docTypeArticle; Early Access-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMathematics-
dc.relation.journalWebOfScienceCategoryMathematics, Applied-
dc.subject.keywordPlusENRICHED NONEXPANSIVE-MAPPINGS-
dc.subject.keywordPlusBANACH-SPACES-
dc.subject.keywordPlusCONTINUOUS DEPENDENCE-
dc.subject.keywordPlusMANN ITERATIONS-
dc.subject.keywordPlusSTABILITY-
dc.subject.keywordPlusTHEOREMS-
dc.subject.keywordPlusOPERATORS-
dc.subject.keywordPlusISHIKAWA-
dc.subject.keywordAuthork-fold averaged mapping-
dc.subject.keywordAuthorWeak enriched F/F '-contraction-
dc.subject.keywordAuthorIterative scheme-
dc.subject.keywordAuthorFixed point-
Files in This Item
There are no files associated with this item.
Appears in
Collections
사범대학 > 수학교육과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Cho, Yeol Je photo

Cho, Yeol Je
사범대학 (수학교육과)
Read more

Altmetrics

Total Views & Downloads

BROWSE