Detailed Information

Cited 2 time in webofscience Cited 2 time in scopus
Metadata Downloads

Improving ion uptake in artificial synapses through facilitated diffusion mechanisms

Authors
Sung, JunhoCheon, Hyung JinLee, DonghwaChung, SeinAyuningtias, LandepYang, HoichangJeon, ByeongjunSeo, BumjoonKim, Yun-HiLee, Eunho
Issue Date
Jul-2025
Publisher
Royal Society of Chemistry
Citation
Materials Horizons, v.12, no.14, pp 5225 - 5235
Pages
11
Indexed
SCIE
SCOPUS
Journal Title
Materials Horizons
Volume
12
Number
14
Start Page
5225
End Page
5235
URI
https://scholarworks.gnu.ac.kr/handle/sw.gnu/78183
DOI
10.1039/d5mh00005j
ISSN
2051-6347
2051-6355
Abstract
Several studies have explored ways to enhance the interaction between the channel layer and ions to realize artificial synapses using organic electrochemical transistors (OECTs). The attachment of glycol side chains can remarkably enhance the ion transport to improve nonvolatile properties via polar groups; however, a comprehensive and methodical evaluation of this phenomenon has yet to be conducted. In this study, we observed the reactivity toward ions and the doping mechanism that changes by glycol group substitution to the side chains of DPP polymers. The analysis revealed that in the presence of glycol chains, the doping mechanism changes to diffusion-dominated, which allows ions to penetrate the channel and interact with it more intensely, thereby enhancing synaptic performance. The fabricated devices successfully mimicked the behavior of biological synapses, such as good long-term synaptic plasticity (LTP), paired-pulse facilitation (PPF), and long-term potentiation/depression (LTP/D). Based on these properties, a high accuracy of 93.7% has been achieved in an artificial neural network for handwritten data recognition at the Modified national institute of standards and technology (MNIST). These findings provide new insights for the realization of artificial synapses and could inspire other research involving reactions with ions.
Files in This Item
There are no files associated with this item.
Appears in
Collections
자연과학대학 > 화학과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Yun Hi photo

Kim, Yun Hi
자연과학대학 (화학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE