Cited 0 time in
Interpretable Machine Learning Predictions of Bruch's Membrane Opening-Minimum Rim Width Using Retinal Nerve Fiber Layer Values and Visual Field Global Indexes
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Seo, Sat Byul | - |
| dc.contributor.author | Cho, Hyun-kyung | - |
| dc.date.accessioned | 2025-05-08T06:00:12Z | - |
| dc.date.available | 2025-05-08T06:00:12Z | - |
| dc.date.issued | 2025-03 | - |
| dc.identifier.issn | 2306-5354 | - |
| dc.identifier.issn | 2306-5354 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/78168 | - |
| dc.description.abstract | The aim of this study was to predict Bruch's membrane opening-minimum rim Width (BMO-MRW), a relatively new parameter using conventional optical coherence tomography (OCT) parameter, using retinal nerve fibre layer (RNFL) thickness and visual field (VF) global indexes (MD, PSD, and VFI). We developed an interpretable machine learning model that integrates structural and functional parameters to predict BMO-MRW. The model achieved the highest predictive accuracy in the inferotemporal sector (R2 = 0.68), followed by the global region (R2 = 0.67) and the superotemporal sector (R2 = 0.64). Through SHAP (SHapley Additive exPlanations) analysis, we demonstrated that RNFL parameters were significant contributing parameters to the prediction of various BMO-MRW parameters, with age and PSD also identified as critical factors. Our machine learning model could provide useful clinical information about the management of glaucoma when BMO-MRW is not available. Our machine learning model has the potential to be highly beneficial in clinical practice for glaucoma diagnosis and the monitoring of disease progression. | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | MDPI AG | - |
| dc.title | Interpretable Machine Learning Predictions of Bruch's Membrane Opening-Minimum Rim Width Using Retinal Nerve Fiber Layer Values and Visual Field Global Indexes | - |
| dc.type | Article | - |
| dc.publisher.location | 스위스 | - |
| dc.identifier.doi | 10.3390/bioengineering12030321 | - |
| dc.identifier.scopusid | 2-s2.0-105001407763 | - |
| dc.identifier.wosid | 001452891200001 | - |
| dc.identifier.bibliographicCitation | Bioengineering (Basel), v.12, no.3 | - |
| dc.citation.title | Bioengineering (Basel) | - |
| dc.citation.volume | 12 | - |
| dc.citation.number | 3 | - |
| dc.type.docType | Article | - |
| dc.description.isOpenAccess | Y | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalResearchArea | Biotechnology & Applied Microbiology | - |
| dc.relation.journalResearchArea | Engineering | - |
| dc.relation.journalWebOfScienceCategory | Biotechnology & Applied Microbiology | - |
| dc.relation.journalWebOfScienceCategory | Engineering, Biomedical | - |
| dc.subject.keywordAuthor | BMO-MRW | - |
| dc.subject.keywordAuthor | Bruch's membrane opening-minimum rim width | - |
| dc.subject.keywordAuthor | optical coherence tomography | - |
| dc.subject.keywordAuthor | visual field | - |
| dc.subject.keywordAuthor | VF global index | - |
| dc.subject.keywordAuthor | machine learning | - |
| dc.subject.keywordAuthor | gradient boosting regression | - |
| dc.subject.keywordAuthor | SHAP | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
