Detailed Information

Cited 1 time in webofscience Cited 0 time in scopus
Metadata Downloads

Interpretable Machine Learning Predictions of Bruch's Membrane Opening-Minimum Rim Width Using Retinal Nerve Fiber Layer Values and Visual Field Global Indexes

Full metadata record
DC Field Value Language
dc.contributor.authorSeo, Sat Byul-
dc.contributor.authorCho, Hyun-kyung-
dc.date.accessioned2025-05-08T06:00:12Z-
dc.date.available2025-05-08T06:00:12Z-
dc.date.issued2025-03-
dc.identifier.issn2306-5354-
dc.identifier.issn2306-5354-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/78168-
dc.description.abstractThe aim of this study was to predict Bruch's membrane opening-minimum rim Width (BMO-MRW), a relatively new parameter using conventional optical coherence tomography (OCT) parameter, using retinal nerve fibre layer (RNFL) thickness and visual field (VF) global indexes (MD, PSD, and VFI). We developed an interpretable machine learning model that integrates structural and functional parameters to predict BMO-MRW. The model achieved the highest predictive accuracy in the inferotemporal sector (R2 = 0.68), followed by the global region (R2 = 0.67) and the superotemporal sector (R2 = 0.64). Through SHAP (SHapley Additive exPlanations) analysis, we demonstrated that RNFL parameters were significant contributing parameters to the prediction of various BMO-MRW parameters, with age and PSD also identified as critical factors. Our machine learning model could provide useful clinical information about the management of glaucoma when BMO-MRW is not available. Our machine learning model has the potential to be highly beneficial in clinical practice for glaucoma diagnosis and the monitoring of disease progression.-
dc.language영어-
dc.language.isoENG-
dc.publisherMDPI AG-
dc.titleInterpretable Machine Learning Predictions of Bruch's Membrane Opening-Minimum Rim Width Using Retinal Nerve Fiber Layer Values and Visual Field Global Indexes-
dc.typeArticle-
dc.publisher.location스위스-
dc.identifier.doi10.3390/bioengineering12030321-
dc.identifier.scopusid2-s2.0-105001407763-
dc.identifier.wosid001452891200001-
dc.identifier.bibliographicCitationBioengineering (Basel), v.12, no.3-
dc.citation.titleBioengineering (Basel)-
dc.citation.volume12-
dc.citation.number3-
dc.type.docTypeArticle-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaBiotechnology & Applied Microbiology-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalWebOfScienceCategoryBiotechnology & Applied Microbiology-
dc.relation.journalWebOfScienceCategoryEngineering, Biomedical-
dc.subject.keywordAuthorBMO-MRW-
dc.subject.keywordAuthorBruch's membrane opening-minimum rim width-
dc.subject.keywordAuthoroptical coherence tomography-
dc.subject.keywordAuthorvisual field-
dc.subject.keywordAuthorVF global index-
dc.subject.keywordAuthormachine learning-
dc.subject.keywordAuthorgradient boosting regression-
dc.subject.keywordAuthorSHAP-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Medicine > Department of Medicine > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Cho, Hyun Kyung photo

Cho, Hyun Kyung
의과대학 (의학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE