Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Multiscale stochastic fatigue analysis of CFRP laminate composites with Bayesian calibration-based characterization method

Full metadata record
DC Field Value Language
dc.contributor.authorChoi, Hoil-
dc.contributor.authorLim, Hyoung Jun-
dc.contributor.authorHa, Dongwon-
dc.contributor.authorKim, Jeong Hwan-
dc.contributor.authorYun, Gun Jin-
dc.date.accessioned2025-05-08T05:30:12Z-
dc.date.available2025-05-08T05:30:12Z-
dc.date.issued2025-07-
dc.identifier.issn0263-8223-
dc.identifier.issn1879-1085-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/78149-
dc.description.abstractThis paper establishes a novel multiscale stochastic fatigue analysis framework to predict the uncertainty characteristics observed in the fatigue experiments of carbon fiber reinforced polymer (CFRP) laminate composites. A Bayesian calibration-based characterization method derives fatigue parameter distributions for constituent level (fiber, matrix, interface) from lamina fatigue experimental results. With multiscale fatigue analysis framework, a micromechanics theory-based constitutive model is defined to calculate the fatigue damage at the constituent level, and the degradation effects due to fatigue damage are reflected during the finite element (FE) analysis. Additionally, the uncertainty of material properties present in the specimens is captured using the Karhunen-Loe`ve (KL) expansion method, a spectral stochastic finite element method (SSFEM). As a result of multiscale stochastic fatigue analysis, a distribution of fatigue life and fatigue failure mechanisms can be predicted. Considering the stochastic properties observed in experimental results, it can be confirmed that the developed method accurately reflects the realistic fatigue behavior of CFRP laminate composites.-
dc.language영어-
dc.language.isoENG-
dc.publisherElsevier BV-
dc.titleMultiscale stochastic fatigue analysis of CFRP laminate composites with Bayesian calibration-based characterization method-
dc.typeArticle-
dc.publisher.location영국-
dc.identifier.doi10.1016/j.compstruct.2025.119139-
dc.identifier.scopusid2-s2.0-105001597894-
dc.identifier.wosid001462341700001-
dc.identifier.bibliographicCitationComposite Structures, v.363-
dc.citation.titleComposite Structures-
dc.citation.volume363-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMechanics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryMechanics-
dc.relation.journalWebOfScienceCategoryMaterials Science, Composites-
dc.subject.keywordPlusLIFE PREDICTION-
dc.subject.keywordPlusDAMAGE MECHANISMS-
dc.subject.keywordPlusFAILURE CRITERION-
dc.subject.keywordPlusMODEL-
dc.subject.keywordPlusINTERFACE-
dc.subject.keywordPlusBEHAVIOR-
dc.subject.keywordPlusCRACK-
dc.subject.keywordAuthorMultiscale modeling-
dc.subject.keywordAuthorStochastic fatigue analysis-
dc.subject.keywordAuthorCFRP laminate composite-
dc.subject.keywordAuthorCharacterization method-
dc.subject.keywordAuthorBayesian inference-
Files in This Item
There are no files associated with this item.
Appears in
Collections
공학계열 > 기계항공우주공학부 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lim, Hyoung Jun photo

Lim, Hyoung Jun
대학원 (기계항공우주공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE