Cited 0 time in
Multiscale stochastic fatigue analysis of CFRP laminate composites with Bayesian calibration-based characterization method
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Choi, Hoil | - |
| dc.contributor.author | Lim, Hyoung Jun | - |
| dc.contributor.author | Ha, Dongwon | - |
| dc.contributor.author | Kim, Jeong Hwan | - |
| dc.contributor.author | Yun, Gun Jin | - |
| dc.date.accessioned | 2025-05-08T05:30:12Z | - |
| dc.date.available | 2025-05-08T05:30:12Z | - |
| dc.date.issued | 2025-07 | - |
| dc.identifier.issn | 0263-8223 | - |
| dc.identifier.issn | 1879-1085 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/78149 | - |
| dc.description.abstract | This paper establishes a novel multiscale stochastic fatigue analysis framework to predict the uncertainty characteristics observed in the fatigue experiments of carbon fiber reinforced polymer (CFRP) laminate composites. A Bayesian calibration-based characterization method derives fatigue parameter distributions for constituent level (fiber, matrix, interface) from lamina fatigue experimental results. With multiscale fatigue analysis framework, a micromechanics theory-based constitutive model is defined to calculate the fatigue damage at the constituent level, and the degradation effects due to fatigue damage are reflected during the finite element (FE) analysis. Additionally, the uncertainty of material properties present in the specimens is captured using the Karhunen-Loe`ve (KL) expansion method, a spectral stochastic finite element method (SSFEM). As a result of multiscale stochastic fatigue analysis, a distribution of fatigue life and fatigue failure mechanisms can be predicted. Considering the stochastic properties observed in experimental results, it can be confirmed that the developed method accurately reflects the realistic fatigue behavior of CFRP laminate composites. | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | Elsevier BV | - |
| dc.title | Multiscale stochastic fatigue analysis of CFRP laminate composites with Bayesian calibration-based characterization method | - |
| dc.type | Article | - |
| dc.publisher.location | 영국 | - |
| dc.identifier.doi | 10.1016/j.compstruct.2025.119139 | - |
| dc.identifier.scopusid | 2-s2.0-105001597894 | - |
| dc.identifier.wosid | 001462341700001 | - |
| dc.identifier.bibliographicCitation | Composite Structures, v.363 | - |
| dc.citation.title | Composite Structures | - |
| dc.citation.volume | 363 | - |
| dc.type.docType | Article | - |
| dc.description.isOpenAccess | N | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalResearchArea | Mechanics | - |
| dc.relation.journalResearchArea | Materials Science | - |
| dc.relation.journalWebOfScienceCategory | Mechanics | - |
| dc.relation.journalWebOfScienceCategory | Materials Science, Composites | - |
| dc.subject.keywordPlus | LIFE PREDICTION | - |
| dc.subject.keywordPlus | DAMAGE MECHANISMS | - |
| dc.subject.keywordPlus | FAILURE CRITERION | - |
| dc.subject.keywordPlus | MODEL | - |
| dc.subject.keywordPlus | INTERFACE | - |
| dc.subject.keywordPlus | BEHAVIOR | - |
| dc.subject.keywordPlus | CRACK | - |
| dc.subject.keywordAuthor | Multiscale modeling | - |
| dc.subject.keywordAuthor | Stochastic fatigue analysis | - |
| dc.subject.keywordAuthor | CFRP laminate composite | - |
| dc.subject.keywordAuthor | Characterization method | - |
| dc.subject.keywordAuthor | Bayesian inference | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
