Detailed Information

Cited 3 time in webofscience Cited 3 time in scopus
Metadata Downloads

Prediction of Creep Rupture Life of 5Cr-0.5Mo Steel Using Machine Learning Models

Full metadata record
DC Field Value Language
dc.contributor.authorIshtiaq, Muhammad-
dc.contributor.authorTariq, Hafiz Muhammad Rehan-
dc.contributor.authorReddy, Devarapalli Yuva Charan-
dc.contributor.authorKang, Sung-Gyu-
dc.contributor.authorReddy, Nagireddy Gari Subba-
dc.date.accessioned2025-05-02T07:30:16Z-
dc.date.available2025-05-02T07:30:16Z-
dc.date.issued2025-03-
dc.identifier.issn2075-4701-
dc.identifier.issn2075-4701-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/77964-
dc.description.abstractThe creep rupture life of 5Cr-0.5Mo steels used in high-temperature applications is significantly influenced by factors such as minor alloying elements, hardness, austenite grain size, non-metallic inclusions, service temperature, and applied stress. The relationship of these variables with the creep rupture life is quite complex. In this study, the creep rupture life of 5Cr-0.5Mo steel was predicted using various machine learning (ML) models. To achieve higher accuracy, various ML techniques, including random forest (RF), gradient boosting (GB), linear regression (LR), artificial neural network (ANN), AdaBoost (AB), and extreme gradient boosting (XGB), were applied with careful optimization of hidden parameters. Among these, the ANN-based model demonstrated superior performance, yielding high accuracy with minimal prediction errors for the test dataset (RMSE = 0.069, MAE = 0.053, MAPE = 0.014, and R2 = 1). Additionally, we developed a user-friendly graphical user interface (GUI) for the ANN model, enabling users to predict and optimize creep rupture life. This tool helps materials scientists and industrialists prevent failures in high-temperature applications and design steel compositions with enhanced creep resistance.-
dc.language영어-
dc.language.isoENG-
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)-
dc.titlePrediction of Creep Rupture Life of 5Cr-0.5Mo Steel Using Machine Learning Models-
dc.typeArticle-
dc.publisher.location스위스-
dc.identifier.doi10.3390/met15030288-
dc.identifier.scopusid2-s2.0-105001127384-
dc.identifier.wosid001452460500001-
dc.identifier.bibliographicCitationMetals, v.15, no.3-
dc.citation.titleMetals-
dc.citation.volume15-
dc.citation.number3-
dc.type.docTypeArticle-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.subject.keywordPlusMAGNETIC BARKHAUSEN EMISSIONS-
dc.subject.keywordPlusMECHANICAL-PROPERTIES-
dc.subject.keywordPlusBEHAVIOR-
dc.subject.keywordPlusMO-
dc.subject.keywordPlusPRECIPITATION-
dc.subject.keywordPlusTEMPERATURE-
dc.subject.keywordPlusCHROMIUM-
dc.subject.keywordPlusCARBIDE-
dc.subject.keywordPlusLATH-
dc.subject.keywordAuthor5Cr-0.5Mo steel-
dc.subject.keywordAuthorcreep rupture life-
dc.subject.keywordAuthormachine learning-
dc.subject.keywordAuthorcomposition-
dc.subject.keywordAuthortemperature-
dc.subject.keywordAuthorstress-
Files in This Item
There are no files associated with this item.
Appears in
Collections
공과대학 > 나노신소재공학부금속재료공학전공 > Journal Articles
공학계열 > Dept.of Materials Engineering and Convergence Technology > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kang, Sung-Gyu photo

Kang, Sung-Gyu
대학원 (나노신소재융합공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE