Cited 1 time in
Decadal and seasonal oceanographic trends influenced by climate changes in the Gulf of Thailand
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Lubis, Muhammad Zainuddin | - |
| dc.contributor.author | Ghazali, Muhammad | - |
| dc.contributor.author | Simanjuntak, Andrean V. H. | - |
| dc.contributor.author | Riama, Nelly F. | - |
| dc.contributor.author | Pasma, Gumilang R. | - |
| dc.contributor.author | Priatna, Asep | - |
| dc.contributor.author | Kausarian, Husnul | - |
| dc.contributor.author | Suryadarma, Made Wedanta | - |
| dc.contributor.author | Pujiyati, Sri | - |
| dc.contributor.author | Simanungkalit, Fredrich | - |
| dc.contributor.author | Batara | - |
| dc.contributor.author | Ansari, Kutubuddin | - |
| dc.contributor.author | Jamjareegulgarn, Punyawi | - |
| dc.date.accessioned | 2025-05-02T06:00:21Z | - |
| dc.date.available | 2025-05-02T06:00:21Z | - |
| dc.date.issued | 2025-06 | - |
| dc.identifier.issn | 1110-9823 | - |
| dc.identifier.issn | 2090-2476 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/77950 | - |
| dc.description.abstract | Our study investigates the decadal and seasonal variability of sea surface height (SSH) and sea surface temperature (SST) in the Gulf of Thailand (GoT) using data from CMEMS from 1993 to 2021. We employed statistical analyses utilizing GLM and GAM to assess the variables comprehensively. The reveals a significant upward trend in SSH, increasing from 0.79 m in 1993-1998 to 0.89 m in 2017-2021, highlighting the impacts of climate change. SST analysis revealed fluctuations, with a maximum reaching 30.6 degrees C in 2019-2020, correlating with climatic events such as El Nino. Our study results at station 1 (near Bangkok) showed that the average SSH in 1998 during strong El Nino years was equal to 0.82 m, while the maximum SST was equal to 29.89 degrees C. Seasonal patterns indicated SSH peaks in DJF and SON at 0.92 m, while SST peaked in spring MAM and summer JJA at 30.7 degrees C. Volume transport analysis showed significant variability, with 0.3634 Sv (0-55 m) at longitude 99 degrees E- 107 degrees E and latitude 6 degrees N, indicating complex circulation patterns influenced by bathymetry and wind. Time series analysis revealed an average SSH increase of 0.0038 m/year, with a high pseudo-R-squared of 0.99. Our findings underscore the critical influence of climate variability on oceanographic conditions in the GoT, emphasizing the need for ongoing monitoring to address the implications of rising sea levels and temperature fluctuations. In conjunction with increased SSH, the rising SST heightens the risk of flooding in low-lying areas, exacerbating vulnerabilities for local populations and necessitating adaptive management strategies to mitigate these impacts. | - |
| dc.format.extent | 16 | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | National Authority Remote Sensing and Space Sciences | - |
| dc.title | Decadal and seasonal oceanographic trends influenced by climate changes in the Gulf of Thailand | - |
| dc.type | Article | - |
| dc.publisher.location | 네델란드 | - |
| dc.identifier.doi | 10.1016/j.ejrs.2025.02.003 | - |
| dc.identifier.scopusid | 2-s2.0-105000050402 | - |
| dc.identifier.wosid | 001446264000001 | - |
| dc.identifier.bibliographicCitation | Egyptian Journal of Remote Sensing and Space Science, v.28, no.2, pp 151 - 166 | - |
| dc.citation.title | Egyptian Journal of Remote Sensing and Space Science | - |
| dc.citation.volume | 28 | - |
| dc.citation.number | 2 | - |
| dc.citation.startPage | 151 | - |
| dc.citation.endPage | 166 | - |
| dc.type.docType | Article | - |
| dc.description.isOpenAccess | Y | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalResearchArea | Environmental Sciences & Ecology | - |
| dc.relation.journalResearchArea | Remote Sensing | - |
| dc.relation.journalWebOfScienceCategory | Environmental Sciences | - |
| dc.relation.journalWebOfScienceCategory | Remote Sensing | - |
| dc.subject.keywordPlus | SEA-SURFACE TEMPERATURE | - |
| dc.subject.keywordPlus | SOUTHERN-OSCILLATION | - |
| dc.subject.keywordPlus | EL-NINO | - |
| dc.subject.keywordPlus | HEIGHT | - |
| dc.subject.keywordPlus | CHINA | - |
| dc.subject.keywordAuthor | Climate change | - |
| dc.subject.keywordAuthor | Gulf of Thailand | - |
| dc.subject.keywordAuthor | Sea surface height (SSH) | - |
| dc.subject.keywordAuthor | Sea surface temperature (SST) | - |
| dc.subject.keywordAuthor | El Nino-Southern Oscillation (ENSO) | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
