Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Improvement of hovering stability for UAVs under crosswinds via evolutionary learning-based optimal PID control

Full metadata record
DC Field Value Language
dc.contributor.authorYoon, Jaehyun-
dc.contributor.authorKim, Mantae-
dc.contributor.authorBang, Jinhong-
dc.contributor.authorKim, Sanghoon-
dc.contributor.authorDoh, Jaehyeok-
dc.date.accessioned2025-04-29T09:00:13Z-
dc.date.available2025-04-29T09:00:13Z-
dc.date.issued2025-04-
dc.identifier.issn1738-494X-
dc.identifier.issn1976-3824-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/77867-
dc.description.abstractThis study aimed to optimize PID gain values to enable the swift recovery of unstable unmanned air vehicles (UAVs) while maintaining robust control in the presence of crosswind effects. Previous research concentrated on rotor and blade optimization for thrust. In this study, PID gain values were obtained by generating a PID control algorithm for the optimized UAV. A surrogate model between PID gain levels and performance variables was constructed by using a backpropagation neural network. Moreover, a nondominated sorting genetic algorithm-II was used to optimize PID gain settings for stability in a UAV affected by crosswind and instability. Altitude disturbance during hovering increased by 78 %, with roll motion and crosswind effects rising by 19 % and 33 %, respectively, in comparison with initial designs. Evolutionary learning-based PID control improved UAV stability, enabling quick recovery from crosswind-induced tilting. In future research, PID control gains with high robustness against external disturbances for various flight conditions will be determined.-
dc.format.extent12-
dc.language영어-
dc.language.isoENG-
dc.publisher대한기계학회-
dc.titleImprovement of hovering stability for UAVs under crosswinds via evolutionary learning-based optimal PID control-
dc.typeArticle-
dc.publisher.location대한민국-
dc.identifier.doi10.1007/s12206-025-0338-7-
dc.identifier.scopusid2-s2.0-105003002966-
dc.identifier.wosid001459762600001-
dc.identifier.bibliographicCitationJournal of Mechanical Science and Technology, v.39, no.4, pp 2151 - 2162-
dc.citation.titleJournal of Mechanical Science and Technology-
dc.citation.volume39-
dc.citation.number4-
dc.citation.startPage2151-
dc.citation.endPage2162-
dc.type.docTypeArticle-
dc.identifier.kciidART003192640-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.description.journalRegisteredClasskci-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalWebOfScienceCategoryEngineering, Mechanical-
dc.subject.keywordPlusAPPROXIMATE OPTIMIZATION-
dc.subject.keywordPlusQUADROTOR HELICOPTER-
dc.subject.keywordPlusATTITUDE-CONTROL-
dc.subject.keywordPlusSTABILIZATION-
dc.subject.keywordPlusDESIGN-
dc.subject.keywordAuthorPID controller-
dc.subject.keywordAuthorUnmanned air vehicle-
dc.subject.keywordAuthorEvolutionary learning-
dc.subject.keywordAuthorAttitude stabilization-
dc.subject.keywordAuthorBackpropagation neural network-
Files in This Item
There are no files associated with this item.
Appears in
Collections
공학계열 > 기계공학과 > Journal Articles
공학계열 > 기계항공우주공학부 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Doh, Jae Hyeok photo

Doh, Jae Hyeok
우주항공대학 (항공우주공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE