Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Proximal Policy-Guided Hyperparameter Optimization for Mitigating Model Decay in Cryptocurrency Scam Detection

Full metadata record
DC Field Value Language
dc.contributor.authorChoi, Su-Hwan-
dc.contributor.authorChoi, Sang-Min-
dc.contributor.authorBuu, Seok-Jun-
dc.date.accessioned2025-04-04T08:30:13Z-
dc.date.available2025-04-04T08:30:13Z-
dc.date.issued2025-03-
dc.identifier.issn2079-9292-
dc.identifier.issn2079-9292-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/77703-
dc.description.abstractAs cryptocurrency transactions continue to grow, detecting scams within transaction records remains a critical challenge. These transactions can be represented as dynamic graphs, where Neural Network Convolution (NNConv) models are widely used for detection. However, NNConv models suffer from model decay due to evolving transaction patterns, the introduction of new users, and the emergence of adversarial techniques designed to evade detection. To address this issue, we propose an automated, periodic hyperparameter optimization method based on proximal policy optimization (PPO), a reinforcement learning algorithm designed for dynamic environments. By leveraging PPO's stable policy updates and efficient exploration strategies, our approach continuously refines hyperparameters to sustain model performance without frequent retraining. We evaluate the proposed method on a large-scale cryptocurrency transaction dataset containing 2,973,489 nodes and 13,551,303 edges. The results demonstrate that our method achieves an F1 score of 0.9478, outperforming existing graph-based approaches. These findings validate the effectiveness of PPO-based optimization in mitigating model decay and ensuring robust cryptocurrency scam detection.-
dc.language영어-
dc.language.isoENG-
dc.publisherMDPI AG-
dc.titleProximal Policy-Guided Hyperparameter Optimization for Mitigating Model Decay in Cryptocurrency Scam Detection-
dc.typeArticle-
dc.publisher.location스위스-
dc.identifier.doi10.3390/electronics14061192-
dc.identifier.scopusid2-s2.0-105001104422-
dc.identifier.wosid001454699800001-
dc.identifier.bibliographicCitationElectronics (Basel), v.14, no.6-
dc.citation.titleElectronics (Basel)-
dc.citation.volume14-
dc.citation.number6-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryComputer Science, Information Systems-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.subject.keywordAuthormodel decay-
dc.subject.keywordAuthorhyperparameter optimization (HPO)-
dc.subject.keywordAuthorreinforcement learning (RL)-
dc.subject.keywordAuthorproximal policy optimization (PPO)-
dc.subject.keywordAuthorcryptocurrency security-
dc.subject.keywordAuthorfraud detection-
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Seok-Jun, Buu photo

Seok-Jun, Buu
IT공과대학 (컴퓨터공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE