Detailed Information

Cited 0 time in webofscience Cited 1 time in scopus
Metadata Downloads

Elevating Lithium and Sodium Storage Performance Through the Synergistic Integration of ZnS and Sulfurized Polyacrylonitrile Hybrid Anode Materials

Authors
Liu, YingLi, MingxuZabrian, DirfanBaek, Dong-HoKim, Hyun WooKim, Jae-KwangAhn, Jou-Hyeon
Issue Date
Jul-2025
Publisher
WILEY
Keywords
high current density; hybrid anode material; rechargeable Li-ion and Na-ion batteries; sulfurized polyacrylonitrile; zinc sulfide
Citation
Energy & Environmental Materials, v.8, no.4
Indexed
SCIE
SCOPUS
Journal Title
Energy & Environmental Materials
Volume
8
Number
4
URI
https://scholarworks.gnu.ac.kr/handle/sw.gnu/77635
DOI
10.1002/eem2.70001
ISSN
2575-0348
2575-0356
Abstract
High-performance lithium-ion batteries and sodium-ion batteries have been developed utilizing a hybrid anode material composed of zinc sulfide/sulfurized polyacrylonitrile. The in situ-generated zinc sulfide nanoparticles serve as catalytic agents, significantly enhancing conductivity, shortening diffusion paths, and accelerating reaction kinetics. Simultaneously, the sulfurized polyacrylonitrile fibers form a three-dimensional matrix that not only provides a continuous network for rapid electron transfer but also prevents zinc sulfide nanoparticle aggregation and mitigates volume changes during charge-discharge cycles. Moreover, the heterointerface structure at the junction of zinc sulfide nanoparticles and the sulfurized polyacrylonitrile matrix increases the availability of active sites and facilitates both ion adsorption and electron transfer. As an anode material for lithium-ion batteries, the zinc sulfide/sulfurized polyacrylonitrile hybrid demonstrates a high reversible capacity of 1178 mAh g-1 after 100 cycles at a current density of 0.2 A g-1, maintaining a capacity of 788 mAh g-1 after 200 cycles at 1 A g-1. It also exhibits excellent sodium storage capabilities, retaining a capacity of 625 mAh g-1 after 150 cycles at 0.2 A g-1. Furthermore, ex-situ X-ray photoelectron spectroscopy, X-ray diffraction, 7Li solid-state magic angle spinning nuclear magnetic resonance, and in situ Raman are employed to investigate the reaction mechanisms of the zinc sulfide/sulfurized polyacrylonitrile hybrid anode, providing valuable insights that pave the way for the advancement of hybrid anode materials in lithium-ion batteries and sodium-ion batteries.
Files in This Item
There are no files associated with this item.
Appears in
Collections
공과대학 > 화학공학과 > Journal Articles
공학계열 > Dept.of Materials Engineering and Convergence Technology > Journal Articles
공학계열 > 화학공학과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Hyun Woo photo

Kim, Hyun Woo
공과대학 (화학공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE