Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

A Data-Driven Battery Degradation Estimation Method for Low-Earth-Orbit (LEO) Satellites

Full metadata record
DC Field Value Language
dc.contributor.authorPark, Kyun-Sang-
dc.contributor.authorYun, Seok-Teak-
dc.date.accessioned2025-03-05T04:30:13Z-
dc.date.available2025-03-05T04:30:13Z-
dc.date.issued2025-02-
dc.identifier.issn2076-3417-
dc.identifier.issn2076-3417-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/77297-
dc.description.abstractBattery degradation is a critical challenge in the operation and longevity of low-Earth-orbit (LEO) satellites because of its direct impact on mission reliability and power system performance. This study proposes a data-driven approach to accurately estimating the degradation of satellite batteries by integrating a transformer network model for voltage prediction and unscented Kalman filter (UKF) techniques for online state estimation. By utilizing on-orbit telemetry data and machine-learning-based modeling, the proposed method provides processing-time improvements by addressing the limitations of traditional methods imposed by their reliance on predefined conditions and user expertise. The proposed framework is validated using real satellite telemetry data from KOMPSAT-5, demonstrating its ability to predict battery degradation trends over time and under varying operational conditions. This approach minimizes manual data processing requirements and enables the consistent and precise monitoring of battery health.-
dc.language영어-
dc.language.isoENG-
dc.publisherMDPI-
dc.titleA Data-Driven Battery Degradation Estimation Method for Low-Earth-Orbit (LEO) Satellites-
dc.typeArticle-
dc.publisher.location스위스-
dc.identifier.doi10.3390/app15042182-
dc.identifier.scopusid2-s2.0-85218622435-
dc.identifier.wosid001429562500001-
dc.identifier.bibliographicCitationApplied Sciences-basel, v.15, no.4-
dc.citation.titleApplied Sciences-basel-
dc.citation.volume15-
dc.citation.number4-
dc.type.docTypeArticle-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryEngineering, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.subject.keywordAuthorlow-Earth-orbit (LEO) satellite battery-
dc.subject.keywordAuthorbattery state of health (SOH)-
dc.subject.keywordAuthorbattery state of charge (SOC)-
dc.subject.keywordAuthordeep neural network model-
Files in This Item
There are no files associated with this item.
Appears in
Collections
공학계열 > 기계항공우주공학부 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Yun, Seok Teak photo

Yun, Seok Teak
대학원 (기계항공우주공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE