Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

A scalable and flexible hybrid solid electrolyte based on NASICON-structure Li3Zr2Si2PO12 for high-voltage hybrid batteries

Full metadata record
DC Field Value Language
dc.contributor.authorKim, Hyun Woo-
dc.contributor.authorYou, Seung-Min-
dc.contributor.authorHan, Jong Su-
dc.contributor.authorLiu, Ying-
dc.contributor.authorKim, Jae-Kwang-
dc.date.accessioned2025-03-04T06:00:14Z-
dc.date.available2025-03-04T06:00:14Z-
dc.date.issued2025-04-
dc.identifier.issn0378-7753-
dc.identifier.issn1873-2755-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/77244-
dc.description.abstractTo enhance the safety and performance of high-voltage lithium-ion batteries (LIBs) with LiNi0.5Mn1.5O4 (LNMO) cathodes, we have developed an advanced hybrid solid electrolyte (HSE). This HSE comprises a porous- structured polymer-in-ceramic (PIC) Li3Zr2Si2PO12- Poly(vinylidene fluoride) (LZSP-PVDF) composite solid electrolyte (CSE) fabricated via a phase inversion method, with the addition of a minimal amount of liquid electrolyte. This unique design offers exceptional scalability, flexibility, and strong compatibility with lithium metal, effectively mitigating lithium dendrite formation. The HSE exhibits an ionic conductivity of 3.49 x 10-3 S cm- 1 at 30 degrees C, enabling stable operation of solid-state LIBs at ambient temperatures. Furthermore, when integrated with a high-voltage LNMO cathode, the HSE effectively suppresses side reactions due to Mn dissolution from the cathode, significantly improving cycling stability, lifespan, and rate performance. The Li/HSE/LNMO cell maintains 77.0% of its initial capacity after 130 cycles at 0.2 C, far surpassing the conventional Li/PE/LNMO cell, which retained only 49.5 %. These compelling results underscore the potential of the Li/HSE/LNMO configuration in advancing the development of high-voltage, solid-state LIBs for practical applications.-
dc.language영어-
dc.language.isoENG-
dc.publisherElsevier BV-
dc.titleA scalable and flexible hybrid solid electrolyte based on NASICON-structure Li3Zr2Si2PO12 for high-voltage hybrid batteries-
dc.typeArticle-
dc.publisher.location네델란드-
dc.identifier.doi10.1016/j.jpowsour.2025.236415-
dc.identifier.scopusid2-s2.0-85217739066-
dc.identifier.wosid001429384100001-
dc.identifier.bibliographicCitationJournal of Power Sources, v.635-
dc.citation.titleJournal of Power Sources-
dc.citation.volume635-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaElectrochemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryElectrochemistry-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.subject.keywordPlusLINI0.5MN1.5O4 CATHODE-
dc.subject.keywordPlusLITHIUM-
dc.subject.keywordPlusNMR-
dc.subject.keywordAuthorLi3Zr2Si2PO12-
dc.subject.keywordAuthorHybrid solid electrolyte-
dc.subject.keywordAuthorHigh-voltage-
dc.subject.keywordAuthorMn dissolution-
Files in This Item
There are no files associated with this item.
Appears in
Collections
공과대학 > 화학공학과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Hyun Woo photo

Kim, Hyun Woo
공과대학 (화학공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE