Detailed Information

Cited 30 time in webofscience Cited 0 time in scopus
Metadata Downloads

Pulsed laser-patterned high-entropy single-atomic sites and alloy coordinated graphene oxide for pH-universal water electrolysis

Full metadata record
DC Field Value Language
dc.contributor.authorLee, Yeryeong-
dc.contributor.authorTheerthagiri, Jayaraman-
dc.contributor.authorLimphirat, Wanwisa-
dc.contributor.authorPeriyasamy, Ganga-
dc.contributor.authorJeong, Gyoung Hwa-
dc.contributor.authorKheawhom, Soorathep-
dc.contributor.authorTang, Yongbing-
dc.contributor.authorChoi, Myong Yong-
dc.date.accessioned2025-02-21T01:00:08Z-
dc.date.available2025-02-21T01:00:08Z-
dc.date.issued2025-03-
dc.identifier.issn2050-7488-
dc.identifier.issn2050-7496-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/77181-
dc.description.abstractSynthesizing catalysts with multiple single-metal atoms remains challenging. Here, we introduce high-entropy single-atom catalysts (HESACs) co-coordinated with six elements from a FeRuPtNiCoPd high-entropy alloy (HEA) on graphene oxide supports (HESAC-HEA/GO) via single-pot pulsed laser irradiation in liquids (PLIL). This method leverages tailored surface composition and diverse active sites for electrochemical overall water splitting (OWS) across a wide pH range. The synergistic interactions in high-entropy systems and rapid photoreduction of Fe2+via PLIL enhance nuclei generation and active sites compared to Fe3+, achieving high hydrogen evolution reaction in 0.5 M H2SO4 with eta of 49 mV at 10 mA cm-2, and record-high oxygen evolution reaction in 1.0 M KOH with eta of 398 mV. Optimized HESAC-HEA/GO-Fe2+ shows exceptional OWS performance with lower cell voltage compared to HESACC-HEA/GO-Fe3+ and Pt/C. This study offers a robust pathway for fabricating versatile catalysts and facilitates mechanistic insights through in situ Raman and density functional theory analyses.-
dc.format.extent15-
dc.language영어-
dc.language.isoENG-
dc.publisherRoyal Society of Chemistry-
dc.titlePulsed laser-patterned high-entropy single-atomic sites and alloy coordinated graphene oxide for pH-universal water electrolysis-
dc.typeArticle-
dc.publisher.location영국-
dc.identifier.doi10.1039/d5ta00117j-
dc.identifier.scopusid2-s2.0-85217230322-
dc.identifier.wosid001416482800001-
dc.identifier.bibliographicCitationJournal of Materials Chemistry A, v.13, no.13, pp 9073 - 9087-
dc.citation.titleJournal of Materials Chemistry A-
dc.citation.volume13-
dc.citation.number13-
dc.citation.startPage9073-
dc.citation.endPage9087-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.subject.keywordPlusCATALYSTS-
dc.subject.keywordPlusHYDROGEN-
Files in This Item
There are no files associated with this item.
Appears in
Collections
자연과학대학 > 화학과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Altmetrics

Total Views & Downloads

BROWSE