Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Deformation rigidity of the double Cayley Grassmannian

Full metadata record
DC Field Value Language
dc.contributor.authorKim, Shin-young-
dc.contributor.authorPark, Kyeong-Dong-
dc.date.accessioned2025-02-21T00:30:14Z-
dc.date.available2025-02-21T00:30:14Z-
dc.date.issued2025-06-
dc.identifier.issn0926-2245-
dc.identifier.issn1872-6984-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/77179-
dc.description.abstractThe double Cayley Grassmannian is a unique smooth equivariant completion with Picard number one of the 14-dimensional exceptional complex Lie group G2, and it parametrizes eight-dimensional isotropic subalgebras of the complexified bi-octonions. We show the rigidity of the double Cayley Grassmannian under Kähler deformations. This means that for any smooth projective family of complex manifolds over a connected base of which one fiber is biholomorphic to the double Cayley Grassmannian, all other fibers are biholomorphic to the double Cayley Grassmannian. © 2024-
dc.language영어-
dc.language.isoENG-
dc.publisherElsevier BV-
dc.titleDeformation rigidity of the double Cayley Grassmannian-
dc.typeArticle-
dc.publisher.location네델란드-
dc.identifier.doi10.1016/j.difgeo.2024.102219-
dc.identifier.scopusid2-s2.0-85216482788-
dc.identifier.wosid001420718000001-
dc.identifier.bibliographicCitationDifferential Geometry and its Application, v.99-
dc.citation.titleDifferential Geometry and its Application-
dc.citation.volume99-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMathematics-
dc.relation.journalWebOfScienceCategoryMathematics, Applied-
dc.relation.journalWebOfScienceCategoryMathematics-
dc.subject.keywordAuthorDeformation rigidity-
dc.subject.keywordAuthorDouble Cayley Grassmannian-
dc.subject.keywordAuthorProlongations of a linear Lie algebra-
dc.subject.keywordAuthorVariety of minimal rational tangents-
Files in This Item
There are no files associated with this item.
Appears in
Collections
자연과학대학 > ETC > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Park, Kyeong-Dong photo

Park, Kyeong-Dong
자연과학대학 (수학물리학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE