Detailed Information

Cited 4 time in webofscience Cited 0 time in scopus
Metadata Downloads

Colloidal Ink Engineering for Slot-Die Processes to Realize Highly Efficient and Robust Perovskite Solar Modules

Full metadata record
DC Field Value Language
dc.contributor.authorSangale, Sushil Shivaji-
dc.contributor.authorSon, Hyeonsu-
dc.contributor.authorPark, Sang Wook-
dc.contributor.authorPatil, Pramila-
dc.contributor.authorLee, Tae Kyung-
dc.contributor.authorKwon, Sung-Nam-
dc.contributor.authorNa, Seok-In-
dc.date.accessioned2025-02-17T06:30:14Z-
dc.date.available2025-02-17T06:30:14Z-
dc.date.issued2025-03-
dc.identifier.issn0935-9648-
dc.identifier.issn1521-4095-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/77143-
dc.description.abstractPerovskite solar cells (PSCs) have emerged as a promising alternative to silicon solar cells, but challenges remain in developing perovskite inks and processes suitable for large-scale production. This study introduces a novel approach using colloidal inks incorporating toluene and chlorobenzene as co-antisolvents for PSC fabrication via slot-die process. It is found that colloidal inks that are strategically engineered can significantly improve the rheological properties of perovskite inks, leading to enhanced wettability and high-quality film formation. The formation of large colloids such as alpha cubic perovskite, delta hexagonal perovskite and transition intermediate phases promotes heterogeneous nucleation and lowers activation energy for crystallization, resulting in superior crystal growth and improved film morphology. Notably, the co-solvent enhances the FA-PbI3 binding energy and weakens the dimethyl sulfoxide coordination, which is more thermodynamically favorable for perovskite crystallization. This colloidal strategy yields devices with a maximum efficiency of 21.32% and remarkable long-term stability, retaining 77% of initial efficiency over 10115 h. The study demonstrates the scalability of this approach, achieving 20.26% efficiency in lab-scale minimodules and 19.15% in larger convergence minimodules. These findings provide an understanding of the complex relationship between ink composition, rheological properties, film quality, crystallization kinetics, and device performance.-
dc.language영어-
dc.language.isoENG-
dc.publisherWILEY-VCH Verlag GmbH & Co. KGaA, Weinheim-
dc.titleColloidal Ink Engineering for Slot-Die Processes to Realize Highly Efficient and Robust Perovskite Solar Modules-
dc.typeArticle-
dc.publisher.location독일-
dc.identifier.doi10.1002/adma.202420093-
dc.identifier.scopusid2-s2.0-85217045766-
dc.identifier.wosid001413846100001-
dc.identifier.bibliographicCitationAdvanced Materials, v.37, no.11-
dc.citation.titleAdvanced Materials-
dc.citation.volume37-
dc.citation.number11-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.subject.keywordPlusCHEMISTRY-
dc.subject.keywordPlusPROTEIN-
dc.subject.keywordPlusCELLS-
dc.subject.keywordPlusCRYSTALLIZATION-
dc.subject.keywordPlusFABRICATION-
dc.subject.keywordPlusNUCLEATION-
dc.subject.keywordAuthorantisolvent-
dc.subject.keywordAuthorcolloidal ink-
dc.subject.keywordAuthorcrystallization kinetics-
dc.subject.keywordAuthormodules-
dc.subject.keywordAuthorperovskite solar cells-
dc.subject.keywordAuthorslot-die process-
Files in This Item
There are no files associated with this item.
Appears in
Collections
공학계열 > 나노신소재공학부 > Journal Articles
공학계열 > Dept.of Materials Engineering and Convergence Technology > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Tae Kyung photo

Lee, Tae Kyung
대학원 (나노신소재융합공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE