Detailed Information

Cited 1 time in webofscience Cited 1 time in scopus
Metadata Downloads

Research trends in livestock facial identification: a review

Full metadata record
DC Field Value Language
dc.contributor.author강문혜-
dc.contributor.authorSang-Hyon Oh-
dc.date.accessioned2025-02-12T06:00:52Z-
dc.date.available2025-02-12T06:00:52Z-
dc.date.issued2025-01-
dc.identifier.issn2672-0191-
dc.identifier.issn2055-0391-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/75877-
dc.description.abstractThis review examines the application of video processing and convolutional neural network (CNN)-based deep learning for animal face recognition, identification, and re-identification. These technologies are essential for precision livestock farming, addressing challenges in production efficiency, animal welfare, and environmental impact. With advancements in computer technology, livestock monitoring systems have evolved into sensor-based contact methods and video-based non-contact methods. Recent developments in deep learning enable the continuous analysis of accumulated data, automating the monitoring of animal conditions. By integrating video processing with CNN-based deep learning, it is possible to estimate growth, identify individuals, and monitor behavior more effectively. These advancements enhance livestock management systems, leading to improved animal welfare, production outcomes, and sustainability in farming practices.-
dc.format.extent13-
dc.language영어-
dc.language.isoENG-
dc.publisherKorean Society of Animal Sciences and Technology-
dc.titleResearch trends in livestock facial identification: a review-
dc.typeArticle-
dc.publisher.location대한민국-
dc.identifier.doi10.5187/jast.2025.e4-
dc.identifier.scopusid2-s2.0-85218773989-
dc.identifier.wosid001437791900003-
dc.identifier.bibliographicCitationJournal of Animal Science and Technology, v.67, no.1, pp 43 - 55-
dc.citation.titleJournal of Animal Science and Technology-
dc.citation.volume67-
dc.citation.number1-
dc.citation.startPage43-
dc.citation.endPage55-
dc.type.docTypeReview-
dc.identifier.kciidART003170660-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.description.journalRegisteredClasskci-
dc.relation.journalResearchAreaAgriculture-
dc.relation.journalResearchAreaBiotechnology & Applied Microbiology-
dc.relation.journalResearchAreaVeterinary Sciences-
dc.relation.journalWebOfScienceCategoryAgriculture, Dairy & Animal Science-
dc.relation.journalWebOfScienceCategoryBiotechnology & Applied Microbiology-
dc.relation.journalWebOfScienceCategoryVeterinary Sciences-
dc.subject.keywordPlusCOMPUTER VISION-
dc.subject.keywordPlusNEURAL-NETWORKS-
dc.subject.keywordPlusCATTLE-
dc.subject.keywordPlusMODEL-
dc.subject.keywordAuthorLivestock-
dc.subject.keywordAuthorRecognition-
dc.subject.keywordAuthorIdentification-
dc.subject.keywordAuthorRe-identification-
dc.subject.keywordAuthorConvolutional neural network-
dc.subject.keywordAuthorDeep learning-
Files in This Item
There are no files associated with this item.
Appears in
Collections
농업생명과학대학 > 축산과학부 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Altmetrics

Total Views & Downloads

BROWSE