Detailed Information

Cited 4 time in webofscience Cited 4 time in scopus
Metadata Downloads

A Practical Zinc Metal Anode Coating Strategy Utilizing Bulk h-BN and Improved Hydrogen Redox Kinetics

Full metadata record
DC Field Value Language
dc.contributor.authorKim, Dong Il-
dc.contributor.authorJeong, Hee Bin-
dc.contributor.authorLim, Jungmoon-
dc.contributor.authorJeong, Hyeong Seop-
dc.contributor.authorKim, Min Kyeong-
dc.contributor.authorPak, Sangyeon-
dc.contributor.authorLee, Sanghyo-
dc.contributor.authorAn, Geon-Hyoung-
dc.contributor.authorChee, Sang-Soo-
dc.contributor.authorHong, Jin Pyo-
dc.contributor.authorCha, SeungNam-
dc.contributor.authorHong, John-
dc.date.accessioned2025-01-22T01:30:19Z-
dc.date.available2025-01-22T01:30:19Z-
dc.date.issued2025-03-
dc.identifier.issn2575-0348-
dc.identifier.issn2575-0356-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/75774-
dc.description.abstractAchieving high-performance aqueous zinc-ion batteries requires addressing the challenges associated with the stability of zinc metal anodes, particularly the formation of inhomogeneous zinc dendrites during cycling and unstable surface electrochemistry. This study introduces a practical method for scattering untreated bulk hexagonal boron nitride (h-BN) particles onto the zinc anode surface. During cycling, stabilized zinc fills the interstices of scattered h-BN, resulting in a more favorable (002) orientation. Consequently, zinc dendrite formation is effectively suppressed, leading to improved electrochemical stability. The zinc with scattered h-BN in a symmetric cell configuration maintains stability 10 times longer than the bare zinc symmetric cell, lasting 500 hours. Furthermore, in a full cell configuration with α-MnO2 cathode, increased H+ ion activity can effectively alter the major redox kinetics of cycling due to the presence of scattered h-BN on the zinc anode. This shift in H+ ion activity lowers the overall redox potential, resulting in a discharge capacity retention of 96.1% for 300 cycles at a charge/discharge rate of 0.5 A g−1. This study highlights the crucial role of surface modification, and the innovative use of bulk h-BN provides a practical and effective solution for improving the performance and stability. © 2024 The Author(s). Energy & Environmental Materials published by John Wiley & Sons Australia, Ltd on behalf of Zhengzhou University.-
dc.language영어-
dc.language.isoENG-
dc.publisherWILEY-
dc.titleA Practical Zinc Metal Anode Coating Strategy Utilizing Bulk h-BN and Improved Hydrogen Redox Kinetics-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1002/eem2.12826-
dc.identifier.scopusid2-s2.0-85202040799-
dc.identifier.wosid001298581100001-
dc.identifier.bibliographicCitationEnergy & Environmental Materials, v.8, no.2-
dc.citation.titleEnergy & Environmental Materials-
dc.citation.volume8-
dc.citation.number2-
dc.type.docTypeArticle; Early Access-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.subject.keywordAuthoraqueous zinc ion batteries-
dc.subject.keywordAuthorH<sup>+</sup> ion insertion-
dc.subject.keywordAuthorhexagonal boron nitride-
dc.subject.keywordAuthorscattering-
dc.subject.keywordAuthorZn metal anode-
Files in This Item
There are no files associated with this item.
Appears in
Collections
공과대학 > ETC > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE