Detailed Information

Cited 1 time in webofscience Cited 1 time in scopus
Metadata Downloads

Transition of water transport mechanism in laminar graphene membrane with increasing thickness: Influence of strong cohesive interaction among water molecules

Full metadata record
DC Field Value Language
dc.contributor.authorKim, Chang-Min-
dc.contributor.authorYang, Euntae-
dc.contributor.authorKarnik, Rohit-
dc.contributor.authorField, Robert W.-
dc.contributor.authorFane, Anthony G.-
dc.contributor.authorWang, Peng-
dc.contributor.authorKim, In S.-
dc.date.accessioned2025-01-22T00:30:21Z-
dc.date.available2025-01-22T00:30:21Z-
dc.date.issued2025-02-
dc.identifier.issn1385-8947-
dc.identifier.issn1873-3212-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/75762-
dc.description.abstractStacked-graphene nanosheets have attracted significant attention as a new type of separation membrane due to their outstanding separation performance with unique physicochemical characteristics. Many studies have suggested that size exclusion dominates mass transport in stacked-graphene membranes, but the unique transport behavior of water has, up to now, not been adequately explained. In this study, we demonstrate that size-dependent diffusion (i.e. hindered diffusion) is the mechanism underlying transport evidenced by thermodynamic and molecular interaction analysis. Importantly, analysis based on solubility parameters (Hansen solubility parameters and Flory-Huggins parameters) in correlation with permeance revealed that molecular interactions play a key role to account for the distinct water transport behavior. Based on the interaction analysis, it was also discovered that the strong cohesive interaction leads to not only quasi-phase transition of water molecules in confined-nanochannel, but also transition of dominant mechanism from size-dependent to interaction-dependent with increasing thickness. © 2024 Elsevier B.V.-
dc.language영어-
dc.language.isoENG-
dc.publisherElsevier BV-
dc.titleTransition of water transport mechanism in laminar graphene membrane with increasing thickness: Influence of strong cohesive interaction among water molecules-
dc.typeArticle-
dc.publisher.location스위스-
dc.identifier.doi10.1016/j.cej.2024.158366-
dc.identifier.scopusid2-s2.0-85214377832-
dc.identifier.wosid001412293700001-
dc.identifier.bibliographicCitationChemical Engineering Journal, v.505-
dc.citation.titleChemical Engineering Journal-
dc.citation.volume505-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalWebOfScienceCategoryEngineering, Environmental-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.subject.keywordPlusCARBON NANOTUBE MEMBRANES-
dc.subject.keywordPlusOXIDE MEMBRANES-
dc.subject.keywordPlusSOLUBILITY PARAMETERS-
dc.subject.keywordPlusGAS SEPARATION-
dc.subject.keywordPlusORDERED WATER-
dc.subject.keywordPlusICE-
dc.subject.keywordPlusPERMEATION-
dc.subject.keywordPlusSUPERLUBRICITY-
dc.subject.keywordPlusTECHNOLOGY-
dc.subject.keywordPlusADSORPTION-
dc.subject.keywordAuthorCohesive interaction-
dc.subject.keywordAuthorGraphene membrane-
dc.subject.keywordAuthorHindered diffusion-
dc.subject.keywordAuthorMechanism-
dc.subject.keywordAuthorWater-
Files in This Item
There are no files associated with this item.
Appears in
Collections
해양과학대학 > Department of Marine Environmental Engineering > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Yang, Eun Tae photo

Yang, Eun Tae
해양과학대학 (해양환경공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE