Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Cycle integrals and rational period functions for Γ0+(2) and Γ0+(3)

Full metadata record
DC Field Value Language
dc.contributor.authorChoi, SoYoung-
dc.contributor.authorKim, Chang Heon-
dc.contributor.authorLee, Kyung Seung-
dc.date.accessioned2025-01-13T08:00:11Z-
dc.date.available2025-01-13T08:00:11Z-
dc.date.issued2024-12-
dc.identifier.issn2391-5455-
dc.identifier.issn2391-5455-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/75550-
dc.description.abstractFor p ∈ {2, 3} and an even integer k, let Wk-2-(p) be the space of period polynomials of weight k - 2 on Γ+0(p) with eigenvalue -1 under the Fricke involution. We determine the dimension formula for Wk-2-(p) and construct an explicit basis for it using period functions for weakly holomorphic modular forms. Furthermore, for a quadratic form Q, we define the function F-(z, Q) on the complex upper half-plane as a generating function of the cycle integrals of the canonical basis elements for the space of weakly holomorphic modular forms of weight k and eigenvalue -1 under the Fricke involution on Γ0(p). We also show that F-(z, Q) is a modular integral on Γ+0(p). Our approach focuses on calculating cycle integrals within Γ0(p) rather than Γ+0(p), which allows us to overcome certain technical challenges. This study extends earlier work by Choi and Kim (Rational period functions and cycle integrals in higher level cases, J. Math. Anal. Appl. 427 (2015), no. 2, 741–758) which focused on eigenvalue +1, providing new insights by examining eigenvalue -1 cases in the theory of rational period functions and cycle integrals in this setting. © 2024 the author(s), published by De Gruyter.-
dc.language영어-
dc.language.isoENG-
dc.publisherWalter de Gruyter GmbH-
dc.titleCycle integrals and rational period functions for Γ0+(2) and Γ0+(3)-
dc.typeArticle-
dc.publisher.location폴란드-
dc.identifier.doi10.1515/math-2024-0102-
dc.identifier.scopusid2-s2.0-85213407976-
dc.identifier.wosid001380644300001-
dc.identifier.bibliographicCitationOpen Mathematics, v.22, no.1-
dc.citation.titleOpen Mathematics-
dc.citation.volume22-
dc.citation.number1-
dc.type.docTypeArticle-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaMathematics-
dc.relation.journalWebOfScienceCategoryMathematics-
dc.subject.keywordAuthorcycle integrals-
dc.subject.keywordAuthorperiod polynomials-
dc.subject.keywordAuthorrational period functions-
dc.subject.keywordAuthorweakly holomorphic modular forms-
Files in This Item
There are no files associated with this item.
Appears in
Collections
사범대학 > 수학교육과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Choi, So Young photo

Choi, So Young
사범대학 (수학교육과)
Read more

Altmetrics

Total Views & Downloads

BROWSE