Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

직접용융증착 중 스캔 전략에 따른 18Ni300 마레이징강의 미세조직 및 기계적 특성Scan Strategy Effect on the Mechanical Properties and Microstructure of Directed Energy Deposited 18Ni300 Maraging Steel

Other Titles
Scan Strategy Effect on the Mechanical Properties and Microstructure of Directed Energy Deposited 18Ni300 Maraging Steel
Authors
주수빈정영훈노건우백민재이동준김정기
Issue Date
Jan-2025
Publisher
대한금속·재료학회
Keywords
Metal additive manufacturing; Maraging steel; Microstructure; Mechanical property
Citation
대한금속·재료학회지, v.63, no.1, pp 1 - 10
Pages
10
Indexed
SCIE
SCOPUS
KCI
Journal Title
대한금속·재료학회지
Volume
63
Number
1
Start Page
1
End Page
10
URI
https://scholarworks.gnu.ac.kr/handle/sw.gnu/75439
DOI
10.3365/KJMM.2025.63.1.1
ISSN
1738-8228
2288-8241
Abstract
Although the laser scan strategy does not affect the energy density of laser-based additivemanufacturing, changes in laser scan direction critically influence the residual stress and microstructure ofmetallic components. However, only a limited number of studies have investigated the role of laser scanstrategy on the microstructure and mechanical properties of additively manufactured maraging steels. Therefore, this study examines the effect of laser scan strategy on the mechanical properties of 18Ni300maraging steel. Different laser scan strategies influence the morphologies of the molten pool, where retainedaustenite is concentrated in 18Ni300 maraging steel. The 45o sample exhibits a denser molten pooldistribution compared to the other samples due to reduced layer overlapping. Because of the plastic strainincompatibility between martensite and austenite at the molten pool boundary, this dense molten pooldistribution in the 45o sample resulted in the highest back-stress hardening. Additionally, the minimal layeroverlapping in the 45o sample reduces heat exposure during laser-based additive manufacturing, leading toa finer martensite block and lath size. By combining high back-stress hardening with a fine martensite blockand lath size, the 45o sample achieved the highest tensile property compared to the other samples. Theseresults indicate that the selection of laser scan strategy is crucial for designing a heterogeneous microstructurein additively manufactured parts, which can enhance mechanical properties, even with the same energydensity.
Files in This Item
There are no files associated with this item.
Appears in
Collections
공학계열 > Dept.of Materials Engineering and Convergence Technology > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Jung Gi photo

Kim, Jung Gi
대학원 (나노신소재융합공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE