Cited 6 time in
Some identities related to degenerate Bernoulli and degenerate Euler polynomials
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Kim, Taekyun | - |
| dc.contributor.author | Kim, Dae San | - |
| dc.contributor.author | Kim, Wonjoo | - |
| dc.contributor.author | Kwon, Jongkyum | - |
| dc.date.accessioned | 2024-12-17T06:00:12Z | - |
| dc.date.available | 2024-12-17T06:00:12Z | - |
| dc.date.issued | 2024-12 | - |
| dc.identifier.issn | 1387-3954 | - |
| dc.identifier.issn | 1744-5051 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/75066 | - |
| dc.description.abstract | The aim of this paper is to study degenerate Bernoulli and degenerate Euler polynomials and numbers and their higher-order analogues. We express the degenerate Euler polynomials in terms of the degenerate Bernoulli polynomials and vice versa. We prove the distribution formulas for degenerate Bernoulli and degenerate Euler polynomials. We obtain some identities among the higher-order degenerate Bernoulli and higher-order degenerate Euler polynomials. We express the higher-order degenerate Bernoulli polynomials in $x + y$x+y as a linear combination of the degenerate Euler polynomials in $y$y. We get certain identities involving the degenerate $r$r-Stirling numbers of the second and the binomial coefficients. | - |
| dc.format.extent | 16 | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | Taylor & Francis | - |
| dc.title | Some identities related to degenerate Bernoulli and degenerate Euler polynomials | - |
| dc.type | Article | - |
| dc.publisher.location | 미국 | - |
| dc.identifier.doi | 10.1080/13873954.2024.2425155 | - |
| dc.identifier.scopusid | 2-s2.0-85211954657 | - |
| dc.identifier.wosid | 001372852700001 | - |
| dc.identifier.bibliographicCitation | Mathematical and Computer Modelling of Dynamical Systems, v.30, no.1, pp 882 - 897 | - |
| dc.citation.title | Mathematical and Computer Modelling of Dynamical Systems | - |
| dc.citation.volume | 30 | - |
| dc.citation.number | 1 | - |
| dc.citation.startPage | 882 | - |
| dc.citation.endPage | 897 | - |
| dc.type.docType | Article | - |
| dc.description.isOpenAccess | Y | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalResearchArea | Computer Science | - |
| dc.relation.journalResearchArea | Mathematics | - |
| dc.relation.journalWebOfScienceCategory | Computer Science, Interdisciplinary Applications | - |
| dc.relation.journalWebOfScienceCategory | Mathematics, Applied | - |
| dc.subject.keywordPlus | NUMBERS | - |
| dc.subject.keywordAuthor | degenerate Bernoulli polynomials | - |
| dc.subject.keywordAuthor | degenerate Euler polynomials | - |
| dc.subject.keywordAuthor | higher-order degenerate Bernoulli polynomials | - |
| dc.subject.keywordAuthor | higher-order degenerate Euler polynomials | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
