Cited 3 time in
Discovery of Spirosnuolides A-D, Type I/III Hybrid Polyketide Spiro-Macrolides for a Chemotherapeutic Lead against Lung Cancer
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Huynh, Thanh-Hau | - |
| dc.contributor.author | Jang, Sung Chul | - |
| dc.contributor.author | Ban, Yeon Hee | - |
| dc.contributor.author | Lee, Eun-Young | - |
| dc.contributor.author | Kim, Taeho | - |
| dc.contributor.author | Kang, Ilnam | - |
| dc.contributor.author | An, Joon Soo | - |
| dc.contributor.author | Kang, Sangwook | - |
| dc.contributor.author | Han, Jaeho | - |
| dc.contributor.author | Kwon, Yun | - |
| dc.contributor.author | Oh, Daehyun | - |
| dc.contributor.author | Park, Hyeung-Geun | - |
| dc.contributor.author | Cho, Jang-Cheon | - |
| dc.contributor.author | Jang, Jichan | - |
| dc.contributor.author | Oh, Ki-Bong | - |
| dc.contributor.author | Nam, Sang-Jip | - |
| dc.contributor.author | Lee, Sang Kook | - |
| dc.contributor.author | Oh, Dong-Chan | - |
| dc.date.accessioned | 2024-12-17T05:00:18Z | - |
| dc.date.available | 2024-12-17T05:00:18Z | - |
| dc.date.issued | 2024-12 | - |
| dc.identifier.issn | 2691-3704 | - |
| dc.identifier.issn | 2691-3704 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/75047 | - |
| dc.description.abstract | Four new macrolides, spirosnuolides A-D (1-4, respectively), were discovered from the termite nest-derived Kitasatospora sp. INHA29. Spirosnuolides A-D are 18-membered macrolides sharing an embedded [6,6]-spiroketal functionality inside the macrocycle and are conjugated with structurally uncommon side chains featuring cyclopentenone, 1,4-benzoquinone, hydroxyfuroic acid, or butenolide moieties. Structure elucidation was achieved using a combination of spectroscopic analyses, multiple chemical derivatizations (methylation, methanolysis, Luche reduction, and Mosher’s reaction), X-ray diffraction analysis, and computational ECD calculations. Interestingly, genome sequencing analysis suggests that spirosnuolides were biosynthesized through a rare type I/III hybrid polyketide synthase. Importantly, spirosnuolide B displayed potent antiproliferative effects against various cancer cell lines at nanomolar concentrations, particularly against HCC827 cells, an EGFR mutant non-small-cell lung cancer (NSCLC) cell line, with a high safety index value. Based on in vitro studies, the antiproliferative mechanism of spirosnuolide B involved the activation of AMPK signaling, leading to cell cycle arrest and apoptosis in HCC827 cells. Its potent efficacy was also proven in vivo by the effective inhibition of tumor growth in mouse xenograft studies. Moreover, cotreatment with spirosnuolide B and gefitinib, synergistically enhanced the antiproliferative activity and apoptosis, suggesting a potential strategy to overcome gefitinib resistance in EGFR mutant NSCLC. © 2024 The Authors. Published by American Chemical Society. | - |
| dc.format.extent | 12 | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | American Chemical Society | - |
| dc.title | Discovery of Spirosnuolides A-D, Type I/III Hybrid Polyketide Spiro-Macrolides for a Chemotherapeutic Lead against Lung Cancer | - |
| dc.type | Article | - |
| dc.publisher.location | 미국 | - |
| dc.identifier.doi | 10.1021/jacsau.4c00803 | - |
| dc.identifier.scopusid | 2-s2.0-85211446069 | - |
| dc.identifier.wosid | 001374198700001 | - |
| dc.identifier.bibliographicCitation | JACS Au, v.4, no.12, pp 4821 - 4832 | - |
| dc.citation.title | JACS Au | - |
| dc.citation.volume | 4 | - |
| dc.citation.number | 12 | - |
| dc.citation.startPage | 4821 | - |
| dc.citation.endPage | 4832 | - |
| dc.type.docType | Article | - |
| dc.description.isOpenAccess | Y | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.description.journalRegisteredClass | esci | - |
| dc.relation.journalResearchArea | Chemistry | - |
| dc.relation.journalWebOfScienceCategory | Chemistry, Multidisciplinary | - |
| dc.subject.keywordPlus | ACTIVATION | - |
| dc.subject.keywordPlus | AMPK | - |
| dc.subject.keywordPlus | BIOSYNTHESIS | - |
| dc.subject.keywordPlus | COMBINATION | - |
| dc.subject.keywordPlus | INHIBITION | - |
| dc.subject.keywordPlus | GEFITINIB | - |
| dc.subject.keywordAuthor | AMPK signaling | - |
| dc.subject.keywordAuthor | antitumor efficacy | - |
| dc.subject.keywordAuthor | lung cancer | - |
| dc.subject.keywordAuthor | spiroketal macrolides | - |
| dc.subject.keywordAuthor | type I/III polyketide synthase | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
