Cited 23 time in
Multifunctional Zinc Vanadium Oxide Layer on Metal Anodes Via Ultrathin Surface Coating for Enhanced Stability in Aqueous Zinc-Ion Batteries
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Yoo, Geun | - |
| dc.contributor.author | Jo, Yong-Ryun | - |
| dc.contributor.author | An, Geon-Hyoung | - |
| dc.date.accessioned | 2024-12-09T03:00:11Z | - |
| dc.date.available | 2024-12-09T03:00:11Z | - |
| dc.date.issued | 2024-11 | - |
| dc.identifier.issn | 2380-8195 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/74969 | - |
| dc.description.abstract | An ultrathin zinc vanadium oxide (ZVO) layer is introduced onto a Zn anode surface using a surface-coating method. This ZVO layer is shown to inhibit corrosion of the Zn anode and promote uniform Zn deposition. Consequently, the ZVO-coated Zn (ZVO@Zn) anode significantly enhances the performance and stability of zinc ion batteries (ZIBs), demonstrating long-term cycling stability for 1000 h in a Zn symmetric cell at 2 mA cm-2. Additionally, the ZVO@Zn||MnO2 cell shows improved capacity retention and rate capabilities in full-cell tests. The ZVO@Zn||MnO2 cell achieves specific capacities of 227.3 and 131.8 mAh g-1 at 0.3 and 2 C, respectively, compared to those of the bare Zn||MnO2 cell. Furthermore, the ZVO@Zn||MnO2 cell demonstrates relatively stable cycling without significant initial capacity decay, thereby indicating its enhanced long-term performance. This work presents a promising approach for accelerating the development and enhancing the performance and reliability of ZIBs. | - |
| dc.format.extent | 11 | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | American Chemical Society | - |
| dc.title | Multifunctional Zinc Vanadium Oxide Layer on Metal Anodes Via Ultrathin Surface Coating for Enhanced Stability in Aqueous Zinc-Ion Batteries | - |
| dc.type | Article | - |
| dc.publisher.location | 미국 | - |
| dc.identifier.doi | 10.1021/acsenergylett.4c02573 | - |
| dc.identifier.scopusid | 2-s2.0-85209718953 | - |
| dc.identifier.wosid | 001360642400001 | - |
| dc.identifier.bibliographicCitation | ACS Energy Letters, v.9, no.12, pp 5955 - 5965 | - |
| dc.citation.title | ACS Energy Letters | - |
| dc.citation.volume | 9 | - |
| dc.citation.number | 12 | - |
| dc.citation.startPage | 5955 | - |
| dc.citation.endPage | 5965 | - |
| dc.type.docType | Article | - |
| dc.description.isOpenAccess | N | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalResearchArea | Chemistry | - |
| dc.relation.journalResearchArea | Electrochemistry | - |
| dc.relation.journalResearchArea | Energy & Fuels | - |
| dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
| dc.relation.journalResearchArea | Materials Science | - |
| dc.relation.journalWebOfScienceCategory | Chemistry, Physical | - |
| dc.relation.journalWebOfScienceCategory | Electrochemistry | - |
| dc.relation.journalWebOfScienceCategory | Energy & Fuels | - |
| dc.relation.journalWebOfScienceCategory | Nanoscience & Nanotechnology | - |
| dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
| dc.subject.keywordPlus | HIGH-ENERGY | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
