Cited 1 time in
Concrete Feedback Layers: Variable-Length, Bit-Level CSI Feedback Optimization for FDD Wireless Communication Systems
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Ji, Dong Jin | - |
| dc.contributor.author | Chung, Byung Chang | - |
| dc.date.accessioned | 2024-12-03T08:00:44Z | - |
| dc.date.available | 2024-12-03T08:00:44Z | - |
| dc.date.issued | 2024-10 | - |
| dc.identifier.issn | 1536-1276 | - |
| dc.identifier.issn | 1558-2248 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/74748 | - |
| dc.description.abstract | In this work, we present the innovative Concrete Feedback Layers, designed to enable genuine bit-level, end-to-end Channel State Information (CSI) feedback using deep learning techniques. Overcoming the limitations of traditional discrete operations that impede gradient flow, these layers leverage the concrete distribution to facilitate efficient learning processes. Our extensive simulations reveal that these layers significantly enhance digital CSI feedback, achieving superior performance in terms of Normalized Mean Squared Error (NMSE) and cosine similarity compared to conventional feedback models. Furthermore, the integration of the Concrete Feedback Layers with the Feedback Bit Masking Unit (FBMU) allows for authentic bit-level variable-length CSI feedback, while maintaining a single adaptable model for various feedback lengths. This advancement marks a major leap forward in deep learning-based CSI feedback methods, potentially revolutionizing 6G communication systems with its flexibility and efficiency. IEEE | - |
| dc.format.extent | 1 | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | Institute of Electrical and Electronics Engineers | - |
| dc.title | Concrete Feedback Layers: Variable-Length, Bit-Level CSI Feedback Optimization for FDD Wireless Communication Systems | - |
| dc.type | Article | - |
| dc.publisher.location | 미국 | - |
| dc.identifier.doi | 10.1109/TWC.2024.3428863 | - |
| dc.identifier.scopusid | 2-s2.0-85199561385 | - |
| dc.identifier.wosid | 001338574900042 | - |
| dc.identifier.bibliographicCitation | IEEE Transactions on Wireless Communications, v.23, no.10, pp 1 - 1 | - |
| dc.citation.title | IEEE Transactions on Wireless Communications | - |
| dc.citation.volume | 23 | - |
| dc.citation.number | 10 | - |
| dc.citation.startPage | 1 | - |
| dc.citation.endPage | 1 | - |
| dc.type.docType | Article | - |
| dc.description.isOpenAccess | N | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalResearchArea | Engineering | - |
| dc.relation.journalResearchArea | Telecommunications | - |
| dc.relation.journalWebOfScienceCategory | Engineering, Electrical & Electronic | - |
| dc.relation.journalWebOfScienceCategory | Telecommunications | - |
| dc.subject.keywordAuthor | 6G wireless systems | - |
| dc.subject.keywordAuthor | channel feedback | - |
| dc.subject.keywordAuthor | Channel State Information (CSI) | - |
| dc.subject.keywordAuthor | deep learning | - |
| dc.subject.keywordAuthor | Downlink | - |
| dc.subject.keywordAuthor | end-to-end learning | - |
| dc.subject.keywordAuthor | Machine learning for communications | - |
| dc.subject.keywordAuthor | multiple-input multiple-output | - |
| dc.subject.keywordAuthor | neural network architectures | - |
| dc.subject.keywordAuthor | Neural networks | - |
| dc.subject.keywordAuthor | OFDM | - |
| dc.subject.keywordAuthor | Quantization (signal) | - |
| dc.subject.keywordAuthor | Tensors | - |
| dc.subject.keywordAuthor | variable-length feedback | - |
| dc.subject.keywordAuthor | Vectors | - |
| dc.subject.keywordAuthor | Wireless communication | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
