Cited 1 time in
Novel Bis(4-aminophenoxy) Benzene-Based Aramid Copolymers with Enhanced Solution Processability
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Song, Wonseong | - |
| dc.contributor.author | Jadhav, Amol M. | - |
| dc.contributor.author | Ryu, Yeonhae | - |
| dc.contributor.author | Kim, Soojin | - |
| dc.contributor.author | Im, Jaemin | - |
| dc.contributor.author | Jeong, Yujeong | - |
| dc.contributor.author | Kim, Youngjin | - |
| dc.contributor.author | Sung, Yerin | - |
| dc.contributor.author | Kim, Yuri | - |
| dc.contributor.author | Choi, Hyun Ho | - |
| dc.date.accessioned | 2024-12-03T07:30:50Z | - |
| dc.date.available | 2024-12-03T07:30:50Z | - |
| dc.date.issued | 2024-10 | - |
| dc.identifier.issn | 2079-4991 | - |
| dc.identifier.issn | 2079-4991 | - |
| dc.identifier.uri | https://scholarworks.gnu.ac.kr/handle/sw.gnu/74702 | - |
| dc.description.abstract | Aramid copolymers have garnered significant interest due to their potential applications in extreme environments such as the aerospace, defense, and automotive industries. Recent developments in aramid copolymers have moved beyond their traditional use in high-strength, high-temperature resistant fibers. There is now a demand for new polymers that can easily be processed into thin films for applications such as electrical insulation films and membranes, utilizing the inherent properties of aramid copolymers. In this work, we demonstrate two novel aramid copolymers that are capable of polymerizing in polar organic solvents with a high degree of polymerization, achieved by incorporating flexible bis(4-aminophenoxy) benzene moieties into the chain backbone. The synthesized MBAB-aramid and PBAB-aramid have enabled the fabrication of exceptionally thin, clear films, with an average molecular weight exceeding 150 kDa and a thickness ranging from 3 to 10 mu m. The dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA) reveal that the thin films of MBAB-aramid and PBAB-aramid exhibited glass transition temperatures of 270.1 degrees C and 292.7 degrees C, respectively, and thermal decomposition temperatures of 449.6 degrees C and 465.5 degrees C, respectively. The mechanical tensile analysis of the 5 mu m thick films confirmed that the tensile strengths, with elongation at break, are 107.1 MPa (50.7%) for MBAB-aramid and 113.5 MPa (58.4%) for PBAB-aramid, respectively. The thermal and mechanical properties consistently differ between the two polymers, which is attributed to variations in the linearity of the polymer structures and the resulting differences in the density of intermolecular hydrogen bonding and pi-pi interactions. The resulting high-strength, ultra-thin aramid materials offer numerous potential applications in thin films, membranes, and functional coatings across various industries. | - |
| dc.language | 영어 | - |
| dc.language.iso | ENG | - |
| dc.publisher | MDPI | - |
| dc.title | Novel Bis(4-aminophenoxy) Benzene-Based Aramid Copolymers with Enhanced Solution Processability | - |
| dc.type | Article | - |
| dc.publisher.location | 스위스 | - |
| dc.identifier.doi | 10.3390/nano14201632 | - |
| dc.identifier.scopusid | 2-s2.0-85207686361 | - |
| dc.identifier.wosid | 001341713000001 | - |
| dc.identifier.bibliographicCitation | Nanomaterials, v.14, no.20 | - |
| dc.citation.title | Nanomaterials | - |
| dc.citation.volume | 14 | - |
| dc.citation.number | 20 | - |
| dc.type.docType | Article | - |
| dc.description.isOpenAccess | Y | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalResearchArea | Chemistry | - |
| dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
| dc.relation.journalResearchArea | Materials Science | - |
| dc.relation.journalResearchArea | Physics | - |
| dc.relation.journalWebOfScienceCategory | Chemistry, Multidisciplinary | - |
| dc.relation.journalWebOfScienceCategory | Nanoscience & Nanotechnology | - |
| dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
| dc.relation.journalWebOfScienceCategory | Physics, Applied | - |
| dc.subject.keywordPlus | SOLUBLE AROMATIC POLYAMIDES | - |
| dc.subject.keywordPlus | MECHANICAL-PROPERTIES | - |
| dc.subject.keywordPlus | ETHER LINKAGES | - |
| dc.subject.keywordPlus | PERFORMANCE | - |
| dc.subject.keywordPlus | FILMS | - |
| dc.subject.keywordAuthor | aramid copolymer | - |
| dc.subject.keywordAuthor | thin film | - |
| dc.subject.keywordAuthor | extreme environment | - |
| dc.subject.keywordAuthor | bar coating | - |
| dc.subject.keywordAuthor | polymerization | - |
Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.
Gyeongsang National University Central Library, 501, Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea+82-55-772-0532
COPYRIGHT 2022 GYEONGSANG NATIONAL UNIVERSITY LIBRARY. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.
