Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Robust planar object tracking using SIFT and GHT with spatial locality

Full metadata record
DC Field Value Language
dc.contributor.authorLee, Suwon-
dc.contributor.authorChoi, Sang-Min-
dc.date.accessioned2024-12-03T07:30:31Z-
dc.date.available2024-12-03T07:30:31Z-
dc.date.issued2024-11-
dc.identifier.issn0013-5194-
dc.identifier.issn1350-911X-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/74617-
dc.description.abstractPlanar object tracking (POT) is crucial in vision-based robotic applications. Despite significant advancements, tracking planar objects under real-world conditions remains a challenge owing to various factors. The method proposed by the authors leverages SIFT features and generalized Hough transform, which is enhanced by spatial locality, to mitigate background clutter and false matching. The experimental results demonstrate that this method significantly outperforms existing approaches, achieving higher precision across various alignment error thresholds. © 2024 The Author(s). Electronics Letters published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.-
dc.language영어-
dc.language.isoENG-
dc.publisherJohn Wiley and Sons Inc-
dc.titleRobust planar object tracking using SIFT and GHT with spatial locality-
dc.typeArticle-
dc.publisher.location영국-
dc.identifier.doi10.1049/ell2.70035-
dc.identifier.scopusid2-s2.0-85207501983-
dc.identifier.wosid001368234400001-
dc.identifier.bibliographicCitationElectronics Letters, v.60, no.21-
dc.citation.titleElectronics Letters-
dc.citation.volume60-
dc.citation.number21-
dc.type.docTypeArticle-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.subject.keywordAuthorfeature extraction-
dc.subject.keywordAuthorimage processing-
dc.subject.keywordAuthorimage recognition-
dc.subject.keywordAuthorimage representation-
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Su Won photo

Lee, Su Won
IT공과대학 (컴퓨터공학부)
Read more

Altmetrics

Total Views & Downloads

BROWSE