Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

군집 지능 알고리즘을 활용한 포트폴리오 연구

Full metadata record
DC Field Value Language
dc.contributor.author이우식-
dc.date.accessioned2024-12-03T07:00:40Z-
dc.date.available2024-12-03T07:00:40Z-
dc.date.issued2024-10-
dc.identifier.issn1226-833x-
dc.identifier.issn2765-5415-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/74569-
dc.description.abstractWhile metaheuristics have profoundly impacted various fields, domestic financial portfolio optimization research, particularly in asset allocation, remains underdeveloped. This study investigates metaheuristic algorithms for investment strategy optimization. Results reveal that metaheuristic-optimized portfolios outperform the Dow Jones Index in Sharpe ratios, highlighting their potential to significantly enhance risk-adjusted returns. A comparative analysis of Ant Colony Optimization (ACO) and Cuckoo Search Algorithm (CSA) shows CSA's slight superiority in risk-adjusted performance. This advantage is attributed to CSA's maintained randomness and Lévy flight model, which effectively balance local and global search, whereas ACO may converge prematurely due to path reinforcement. These findings underscore metaheuristics' capacity to maximize expected returns at given risk levels, offering flexible, robust solutions for investment strategy optimization.-
dc.format.extent8-
dc.language한국어-
dc.language.isoKOR-
dc.publisher한국산업융합학회-
dc.title군집 지능 알고리즘을 활용한 포트폴리오 연구-
dc.title.alternativeA Study on Portfolios Using Swarm Intelligence Algorithms-
dc.typeArticle-
dc.publisher.location대한민국-
dc.identifier.doi10.21289/KSIC.2024.27.5.1081-
dc.identifier.bibliographicCitation한국산업융합학회논문집, v.27, no.5, pp 1081 - 1088-
dc.citation.title한국산업융합학회논문집-
dc.citation.volume27-
dc.citation.number5-
dc.citation.startPage1081-
dc.citation.endPage1088-
dc.identifier.kciidART003131295-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClasskci-
dc.subject.keywordAuthorQuantitative Finance-
dc.subject.keywordAuthorBusiness Analytics-
dc.subject.keywordAuthorIntelligence Optimization-
dc.subject.keywordAuthorComputational Intelligence-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Business Administration > 스마트유통물류학과 > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Woo Sik photo

Lee, Woo Sik
경영대학 (스마트유통물류학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE