Detailed Information

Cited 40 time in webofscience Cited 44 time in scopus
Metadata Downloads

High strength aluminum alloys design via explainable artificial intelligence

Full metadata record
DC Field Value Language
dc.contributor.authorPark, Seobin-
dc.contributor.authorKayani, Saif Haider-
dc.contributor.authorEuh, Kwangjun-
dc.contributor.authorSeo, Eunhyeok-
dc.contributor.authorKim, Hayeol-
dc.contributor.authorPark, Sangeun-
dc.contributor.authorYadav, Bishnu Nand-
dc.contributor.authorPark, Seong Jin-
dc.contributor.authorSung, Hyokyung-
dc.contributor.authorJung, Im Doo-
dc.date.accessioned2024-12-03T06:00:56Z-
dc.date.available2024-12-03T06:00:56Z-
dc.date.issued2022-05-
dc.identifier.issn0925-8388-
dc.identifier.issn1873-4669-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/74456-
dc.description.abstractHere, we have approached to discover new aluminum (Al) alloys with the assistance of artificial intelligence (A.I.) for the enhanced mechanical property. A high prediction rate of 7xxx series Al alloy was achieved via the Bayesian hyperparameter optimization algorithm. With the guide of A.I.-based recommendation algorithm, new Al alloys were designed that had an excellent combination of strength and ductility with a yield strength (YS) of 712 MPa and elongation (EL) of 19%, exhibiting a homogeneous distribution of nanoscale precipitates hindering dislocation movement during deformation. Adding Mg and Cu was found to be the critical factor that decides the relative ratio of strength and EL. We also demonstrate an explainable A.I. (XAI) system that reveals the relationship between input and output parameters. Our A.I. assistant system can accelerate the search for high-strength Al alloys for both experts and non-experts in the field of Al alloy design. (c) 2022 Published by Elsevier B.V.-
dc.language영어-
dc.language.isoENG-
dc.publisherElsevier BV-
dc.titleHigh strength aluminum alloys design via explainable artificial intelligence-
dc.typeArticle-
dc.publisher.location스위스-
dc.identifier.doi10.1016/j.jallcom.2022.163828-
dc.identifier.scopusid2-s2.0-85123589301-
dc.identifier.wosid000749737800003-
dc.identifier.bibliographicCitationJournal of Alloys and Compounds, v.903-
dc.citation.titleJournal of Alloys and Compounds-
dc.citation.volume903-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.subject.keywordPlusZR-TI ALLOYS-
dc.subject.keywordPlusMG-CU ALLOY-
dc.subject.keywordPlusMICROSTRUCTURAL EVOLUTION-
dc.subject.keywordPlusPRECIPITATION EVOLUTION-
dc.subject.keywordPlusMECHANICAL-BEHAVIOR-
dc.subject.keywordPlusCORROSION BEHAVIOR-
dc.subject.keywordPlusHEAT-TREATMENT-
dc.subject.keywordPlusPROCESS MODEL-
dc.subject.keywordPlusSTEEL WIRES-
dc.subject.keywordPlusAS-CAST-
dc.subject.keywordAuthorAlloy design-
dc.subject.keywordAuthorDeep neural networks-
dc.subject.keywordAuthor7xxx aluminum alloys-
dc.subject.keywordAuthorHyperparameter tuning-
dc.subject.keywordAuthorExplainable artificial intelligence-
dc.subject.keywordAuthorA-
dc.subject.keywordAuthorI-
dc.subject.keywordAuthor-based recommendation algorithm-
Files in This Item
There are no files associated with this item.
Appears in
Collections
공학계열 > Dept.of Materials Engineering and Convergence Technology > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE