Detailed Information

Cited 2 time in webofscience Cited 3 time in scopus
Metadata Downloads

Comparative Study of Quasi-Solid-State Dye-Sensitized Solar Cells Using Z907, N719, Photoactive Phenothiazine Dyes and PVDF-HFP Gel Polymer Electrolytes with Different Molecular Weightsopen access

Authors
Afre, Rakesh A.Ryu, Ka YeonShin, Won SukPugliese, Diego
Issue Date
Aug-2024
Publisher
MDPI AG
Keywords
dye-sensitized solar cells; ruthenium sensitizers; phenothiazine dyes; PVDF-HFP; stability study
Citation
Photonics, v.11, no.8
Indexed
SCIE
SCOPUS
Journal Title
Photonics
Volume
11
Number
8
URI
https://scholarworks.gnu.ac.kr/handle/sw.gnu/74053
DOI
10.3390/photonics11080760
ISSN
2304-6732
2304-6732
Abstract
The present study investigates the influence of photosensitizer selection and the polymer electrolyte composition on the performance of quasi-solid-state dye-sensitized solar cells (QsDSSCs). Two benchmark ruthenium dyes, N719 and Z907, alongside a novel photoactive phenothiazine dye were used. Each dye was incorporated into a QsDSSC architecture employing poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) as the gel electrolyte matrix, with varying molecular weights, to investigate their impacts on the overall device performance and long-term stability. Our results demonstrated that the N719 dye exhibited the highest power conversion efficiency (PCE), attributed to its strong absorption in the visible spectrum and efficient electron injection into the TiO2 photoanode. Z907, on the other hand, showed moderate PCE due to its broader absorption profile but slower electron injection kinetics. The phenothiazine dye revealed promising PCE, with tunable absorption properties and efficient charge transfer. Furthermore, the impact of PVDF-HFP polymer gel electrolytes with varying molecular weights on cell stability was explored. The QsDSSC incorporating the PVH80 polymer with the phenothiazine dye exhibited reduced dye desorption, due to the effective dye molecules' immobilization by the gel matrix, and consequently enhanced long-term stability over 600 h. This comparative study sheds light on the interplay between dye selection, the polymer gel's properties, and QsDSSCs' performance. These insights are crucial in designing robust and efficient QsDSSCs for practical applications.
Files in This Item
There are no files associated with this item.
Appears in
Collections
ETC > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Altmetrics

Total Views & Downloads

BROWSE