Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

선박용 연료전지 성능 예측 방법에 관한 고찰

Full metadata record
DC Field Value Language
dc.contributor.author박은주-
dc.contributor.author이진광-
dc.date.accessioned2024-12-03T04:30:44Z-
dc.date.available2024-12-03T04:30:44Z-
dc.date.issued2024-08-
dc.identifier.issn1738-7264-
dc.identifier.issn2288-7407-
dc.identifier.urihttps://scholarworks.gnu.ac.kr/handle/sw.gnu/73914-
dc.description.abstractSustainable shipping depends on eco-friendly energy solutions. This paper reviews methods for predicting marine fuel cell performance, including empirical approaches, physical modeling, data-driven techniques, and hybrid methods. Accurate prediction models tailored to the marine environment's unique conditions are crucial for operational efficiency. By evaluating the strengths and weaknesses of each method, this study provides a comprehensive analysis of effective strategies for forecasting polymer electrolyte membrane fuel cell and solid oxide fuel cell performance in marine applications. These insights contribute to the advancement of eco-friendly shipping technologies and enhance fuel cell performance in challenging marine environments.-
dc.format.extent14-
dc.language한국어-
dc.language.isoKOR-
dc.publisher한국수소및신에너지학회-
dc.title선박용 연료전지 성능 예측 방법에 관한 고찰-
dc.title.alternativeA Review on Performance Prediction of Marine Fuel Cells-
dc.typeArticle-
dc.publisher.location대한민국-
dc.identifier.bibliographicCitation한국수소및신에너지학회논문집, v.35, no.4, pp 437 - 450-
dc.citation.title한국수소및신에너지학회논문집-
dc.citation.volume35-
dc.citation.number4-
dc.citation.startPage437-
dc.citation.endPage450-
dc.identifier.kciidART003109399-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClasskci-
dc.subject.keywordAuthor선박용 연료전지-
dc.subject.keywordAuthor고체산화물 연료전지-
dc.subject.keywordAuthor성능 예측-
dc.subject.keywordAuthor데이터 기반 예측-
dc.subject.keywordAuthor물리적 모델링-
dc.subject.keywordAuthor하이브리드 접근법-
dc.subject.keywordAuthorMarine fuel cell-
dc.subject.keywordAuthorSolid oxide fuel cell-
dc.subject.keywordAuthorPerformance prediction-
dc.subject.keywordAuthorData-driven prediction-
dc.subject.keywordAuthorPhysical modeling-
dc.subject.keywordAuthorHybrid approach-
Files in This Item
There are no files associated with this item.
Appears in
Collections
공과대학 > ETC > Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Lee, Jinkwang photo

Lee, Jinkwang
공과대학 (기계융합공학과)
Read more

Altmetrics

Total Views & Downloads

BROWSE